

# Rasp Mine, Broken Hill – Modification 6

Air Quality Assessment

26 May 2021 Project No.: 0476778

The business of sustainability

| Docum ent details |                                         |
|-------------------|-----------------------------------------|
| Document title    | Rasp Mine, Broken Hill – Modification 6 |
| Document subtitle | Air Quality Assessment                  |
| Project No.       | 0476778                                 |
| Date              | 26 May 2021                             |
| Version           | R8                                      |
| Author            | Russ Francis, Jordan Eastwood           |
| Client Name       | Broken Hill Operations Pty Ltd (BHOP)   |

#### Document history

|         |          |                                     |                                                           | ERM approval    | to issue   |             |
|---------|----------|-------------------------------------|-----------------------------------------------------------|-----------------|------------|-------------|
| Version | Revision | Author                              | Review ed by                                              | Name            | Date       | Comments    |
| Draft   | 00       | Russ Francis<br>Jordan<br>Eastw ood | Damon Roddis                                              | Damon<br>Roddis | 20.02.2020 | -           |
| Final   | 00       | Russ Francis<br>Jordan<br>Eastw ood | Damon Roddis                                              | Damon<br>Roddis | 26.02.2020 | Final Issue |
| Final   | R1       | Jordan<br>Eastw ood                 | Damon Roddis                                              | Damon<br>Roddis | 24.04.2020 | Revision 1  |
| Final   | R2       | Justine Firth                       | Damon Roddis                                              | Damon<br>Roddis | 22.09.2020 | Revision 2  |
| Final   | R3       | Jordan<br>Eastw ood                 | Damon Roddis                                              | Damon<br>Roddis | 10.11.2020 | Revision 3  |
| Final   | R4       | Jordan<br>Eastw ood                 | Russ Francis<br>Damon Roddis                              | Damon<br>Roddis | 14.12.2020 | Revision 4  |
| Final   | R5       | Jordan<br>Eastw ood                 | Russ Francis<br>Damon Roddis                              | Damon<br>Roddis | 12.02.2021 | Revision 5  |
| Final   | R6       | Russ Francis                        | Damon Roddis                                              | Damon<br>Roddis | 19.03.2021 | Revision 6  |
| Final   | R7       | Russ Francis                        | Damon Roddis                                              | Damon<br>Roddis | 26.03.2021 | Revision 7  |
| Final   | R8       | Russ Francis                        | Jane Barnett<br>Damon Roddis<br>(Zephyr<br>Environmental) | Jane Barnett    | 26.05.2021 | Revision 8  |

#### **Signature Page**

26 May 2021

# **Rasp Mine, Broken Hill – Modification 6**

Air Quality Assessment

Russ Francis Senior Consultant – Air Quality

JerBut

Jane Barnett Partner – Air Quality

ERM Sydney

Level 15, 309 Kent Street Sydney NSW 2000 Australia

© Copyright 2021 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

#### EXECUTIVE SUMMARY

ERM Australia Pacific Pty Ltd (ERM) has been commissioned by Broken Hill Operations Pty Ltd (BHOP), a wholly owned subsidiary of CBH Resources Ltd (CBH), to complete an air quality impact assessment for a proposed modification to Rasp Mine, Broken Hill (Modification 6). BHOP owns and operates the Rasp Mine under Consolidated Mine Lease 7 (CML7).

The Rasp Mine (hereafter referred to as "the Mine") is an underground silver/zinc/lead operation located within the city limits of Broken Hill, NSW. Mining has been undertaken within CML7 since 1885. The existing operations at the Mine include underground mining operations, a processing plant producing zinc and lead concentrates, a rail siding for concentrate dispatch and other associated infrastructure. These operations are undertaken in accordance with Project Approval PA07\_0018, granted from the then Minister for Planning on 31 January 2011, under Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

This report has assessed particulate matter and lead impacts associated with the proposed modification 6 (MOD6) activities at Rasp Mine. Local land use, terrain, air quality and meteorology have been considered in the assessment and dispersion modelling was completed using the AERMOD modelling system.

A comprehensive analysis of the baseline air quality was updated as part of this assessment and now includes data up to June 2019. The year 2016 was chosen for the background data and this aligns with the meteorological data used. This also aligns with previous modelling assessments for this Mine.

This assessment considered three scenarios:

- Business as Usual (BAU) this scenario presents a representative operational year of operations under the existing situation and consists of 100% of operations from the Kintore Pit portal.
- MOD6 Construction scenario this represents the construction of the box cut and the new portal.
- MOD6 Operational scenario this represents a reasonable worst-case future year of operations, with progressive rehabilitation and 100% of operations from the new mine portal.

The construction of the new box cut included in the MOD6 construction scenario is expected to take six months. The MOD6 operational scenario was chosen as a representative reasonable worst-case future operational scenario as it comprised the period with the longest travel distances related to the transport and emplacement of waste rock material.

Emissions to air have been estimated both in terms of annual average as well as a 24-hour (reasonable worst-case) peak scenarios.

These emissions have then been evaluated in terms of their predicted off-site impacts using the AERMOD atmospheric dispersion model.

For the MOD6 construction scenario, there is anticipated to be a net increase in lead concentrations / deposition rates when considering all sensitive receptors when compared with MOD4 mine increment (current Project Approval for construction activities). However, all air quality metrics are predicted to be below their respective NSW EPA criteria for the MOD6 construction scenario. The MOD6 construction scenario is expected to be approximately six months in duration and modelling indicates that the associated impacts will reduce upon completion of this phase.

For the MOD6 operational scenario, which incorporates the new portal location and the proposed tailings harvesting activities, there is a predicted net reduction in lead concentrations / deposition rates when compared with the Preferred Project Report (PPR) (current Project Approval for operation activities) as well as the Business as Usual scenario (BAU). In addition, all air quality metrics are predicted to be below their respective NSW EPA criteria for the MOD6 operational scenario.

Table E.1 presents a comparison of the maximum predicted concentrations at sensitive receptor locations under comparable construction scenarios completed for the Mine. This includes both the

MOD4 and MOD6 construction scenarios, along with comparison against NSW EPA impact assessment criteria.

| Metric                                                            | Maximum predicted | concentrations at                 | sensitive receptors                | NSW EPA                          | Units                   |
|-------------------------------------------------------------------|-------------------|-----------------------------------|------------------------------------|----------------------------------|-------------------------|
|                                                                   | MOD4 increment    | MOD6<br>construction<br>increment | MOD6<br>construction<br>cumulative | impact<br>assessment<br>criteria |                         |
| Annual average<br>lead<br>concentration                           | 0.019             | 0.023                             | 0.240                              | 0.500                            | µg/m³                   |
| Annual average lead deposition                                    | 0.050             | 0.060                             | 0.060                              | N/A                              | g/m²/annum              |
| Annual average<br>TSP<br>concentration                            | 1.1               | 1.3                               | 36.6                               | 90                               | µg/m <sup>3</sup>       |
| Annual average<br>PM <sub>10</sub><br>concentration               | 0.7               | 0.9                               | 13.5                               | 25                               | µg/m <sup>3</sup>       |
| Maximum 24-<br>hour average<br>PM <sub>10</sub><br>concentration  | 7.7               | 14.2                              | 46.6                               | 50                               | µg/m <sup>3</sup>       |
| Annual average<br>PM <sub>2.5</sub><br>concentration              | 0.2               | 0.3                               | 5.5                                | 8                                | µg/m <sup>3</sup>       |
| Maximum 24-<br>hour average<br>PM <sub>2.5</sub><br>concentration | 1.7               | 4.0                               | 19.0                               | 25                               | µg/m <sup>3</sup>       |
| Annual average dust deposition                                    | 0.3               | 0.5                               | 3.4                                | 2 (increment)<br>4 (cumulative)  | g/m <sup>2</sup> /month |

| Table E.1: Maximum predicted concentrations at sensitive receptors under comparable construction |
|--------------------------------------------------------------------------------------------------|
| scenarios                                                                                        |

Table E.2 presents a comparison of the maximum predicted concentrations at sensitive receptor locations under comparable operational scenarios completed for the Mine. This includes the PPR, BAU and MOD6 operational scenarios along with comparison against NSW EPA impact assessment criteria.

| Metric                                                      | Maxim            | numpredicted     | concentration     | at sensitive r                 | eceptors                        | NSW EPA                               | Units      |
|-------------------------------------------------------------|------------------|------------------|-------------------|--------------------------------|---------------------------------|---------------------------------------|------------|
|                                                             | PPR<br>increment | BAU<br>increment | BAU<br>cumulative | MOD6<br>operation<br>increment | MOD6<br>operation<br>cumulative | impact<br>assessment<br>criteria      |            |
| Annual average lead concentration                           | 0.036            | 0.026            | 0.243             | 0.024                          | 0.241                           | 0.500                                 | µg/m³      |
| Annual average lead deposition                              | 0.200            | 0.069            | 0.069             | 0.067                          | 0.067                           | N/A                                   | g/m²/annum |
| Annual average TSP concentration                            | 2.9              | 1.5              | 36.9              | 1.8                            | 37.0                            | 90                                    | µg/m³      |
| Annual average PM <sub>10</sub> concentration               | 1.0              | 1.0              | 13.6              | 1.0                            | 13.6                            | 25                                    | µg/m³      |
| Maximum24-hour<br>average PM <sub>10</sub><br>concentration | 10.5             | 6.6              | 46.7              | 6.4                            | 46.9                            | 50                                    | µg/m³      |
| Annual average PM <sub>2.5</sub><br>concentration           | 0.3              | 0.3              | 5.6               | 0.3                            | 5.5                             | 8                                     | µg/m³      |
| Maximum24-hour<br>average PM <sub>25</sub><br>concentration | 2.3              | 2.2              | 18.9              | 1.9                            | 18.9                            | 25                                    | µg/m³      |
| Annual average dust<br>deposition                           | 0.5              | 0.3              | 3.4               | 0.3                            | 3.6                             | 2<br>(increment)<br>4<br>(cumulative) | g/m²/month |

# Table E.2: Maximum predicted concentrations at sensitive receptors under comparable operational scenarios

As the MOD6 operational scenario is considered to be a reasonable worst-case future year scenario, it can be concluded that all future operational years are anticipated to result in a net reduction in offsite air quality impacts (including lead) when compared with current operations. This is primarily due to the shorter travelling distance for ore transport from the new portal to the Run of Mine (ROM) pad.

The results for all three scenarios demonstrated compliance with all the NSW EPA impact assessment criteria for all air quality metrics assessed.

Cumulative impacts from the proposed Broken Hill North Mine Recommencement Project have been assessed against both short and long-term air quality criteria. The results demonstrate no exceedance of the NSW impact assessment criteria at any of the receptors assessed.

#### CONTENTS

| EXEC | UTIVE                   | SUMMARY                                                                                                  | I   |
|------|-------------------------|----------------------------------------------------------------------------------------------------------|-----|
| 1.   | INTRO                   | DUCTION                                                                                                  | 1   |
|      | 1.1                     | Background                                                                                               | 1   |
|      | 1.2                     | Scope of Work                                                                                            | 3   |
| 2.   | AMBIE                   | INT AIR QUALITY CRITERIA                                                                                 | 4   |
| 3.   | FMISS                   | IONS INVENTORY                                                                                           | 5   |
|      | 3.1                     | Introduction                                                                                             |     |
|      | 3.2                     | Percentage lead (Pb) composition                                                                         |     |
|      | 3.3                     | Emission estimates                                                                                       |     |
|      | 3.4<br>3.5              | Particle size categories<br>Control measures                                                             |     |
|      |                         |                                                                                                          |     |
| 4.   |                         | RSION MODELLING                                                                                          |     |
|      | 4.1<br>4.2              | Model selection<br>Model Uncertainty                                                                     |     |
|      | 4.3                     | Sensitive Receptors                                                                                      |     |
| 5.   | FXISTI                  | NG ENVIRONMENT                                                                                           | 11  |
| 0.   | 5.1                     | Dispersion Meteorology                                                                                   |     |
|      | 5.2                     | Local air quality                                                                                        |     |
|      |                         | 5.2.1 Characterising background                                                                          | .12 |
|      |                         | 5.2.2 Background lead deposition                                                                         |     |
|      |                         | 5.2.3 Background values for the assessment                                                               | .13 |
| 6.   | AIR QU                  | JALITY IMPACT ASSESSMENT                                                                                 | 14  |
|      | 6.1                     | Annual average lead concentration                                                                        |     |
|      | 6.2<br>6.3              | Annual average lead deposition                                                                           |     |
|      | 6.4                     | Annual and maximum 24-hour average PM <sub>10</sub>                                                      |     |
|      | 6.5                     | Annual and maximum 24-Hour average PM <sub>2.5</sub>                                                     |     |
|      | 6.6<br>6.7              | Monthly average deposited dust<br>Cumulative impacts associated with the Broken Hill North Mine          |     |
|      | -                       |                                                                                                          |     |
| 7.   |                         | MANAGEMENT                                                                                               |     |
|      | 7.1<br>7.2              | Real-time PM and Meteorological Monitoring<br>Predictive / Forecast Meteorology and Real Time Management |     |
|      | 7.2                     | Greenhouse Gas Emissions                                                                                 |     |
| 8.   | CONCI                   | LUSIONS                                                                                                  | 25  |
|      |                         |                                                                                                          |     |
| 9.   | REFER                   | RENCES                                                                                                   | 36  |
|      |                         |                                                                                                          |     |
| APPE | ENDIX A                 | EMISSIONS INVENTORIES AND ASSUMPTIONS FOR THE BAU SCENARIO                                               | ,   |
|      |                         | MOD6 CONSTRUCTON SCENARIO AND MOD6 OPERATIONAL SCENARIO                                                  |     |
| APPE | ENDIX E                 | 3 TABULATED RESULTS FOR BAU, PPR, MOD6 OPERATIONAL SCENARIO,                                             |     |
|      |                         | MOD6 CONSTRUCTION SCENARIO AND MOD4                                                                      |     |
| APPE | APPENDIX C MOD4 RESULTS |                                                                                                          |     |
| APPE | ENDIX D                 | PREDICTED IMPACTS FOR RASP MINE FOR MOD6 CONSTRUCTION                                                    |     |
|      |                         | SCENARIO COMPARED WITH MOD4 SCENARIO                                                                     |     |
| APPE | ENDIX E                 | PREDICTED IMPACTS FOR RASP MINE FOR MOD6 OPERATIONAL<br>SCENARIO COMPARED WITH BAU AND PPR SCENARIOS     |     |

| APPENDIX F | DESCRIPTION OF SENSITIVE RECEPTORS AND ALLOCATED      |
|------------|-------------------------------------------------------|
|            | BACKGROUND MONITORING LOCATION                        |
| APPENDIX G | ANNUAL AND SEASONAL WINDROSES FOR BROKEN HILL AIRPORT |
| APPENDIX H | MONITORING DATA REVIEW                                |
| APPENDIX I | CONTOUR PLOTS                                         |

## List of Tables

| Table E.1: Maximum predicted concentrations at sensitive receptors under comparable construction              |   |
|---------------------------------------------------------------------------------------------------------------|---|
| scenariosi                                                                                                    | i |
| Table E.2: Maximum predicted concentrations at sensitive receptors under comparable operational               |   |
| scenariosii                                                                                                   | i |
| Table 2.1: NSW EPA air quality impact assessment criteria                                                     | ļ |
| Table 3.1: Unpaved roads percentage (%) lead breakdown                                                        | 3 |
| Table 4.1: Summary of main sources of modelling uncertainty 8                                                 | 3 |
| Table 6.1: Predicted incremental annual average lead concentration (as TSP) (µg/m <sup>3</sup> ) for the MOD6 |   |
| construction scenario, with comparison to MOD415                                                              | 5 |
| Table 6.2: Predicted incremental annual average lead concentration (as TSP) (µg/m <sup>3</sup> ) for the MOD6 |   |
| operational scenarios, with comparison to the PPR and BAU16                                                   | 3 |
| Table 6.3: Predicted incremental annual average lead deposition (as total particulate) (g/m²/annum)           |   |
| for the MOD6 construction scenario, with comparison to MOD420                                                 | ) |
| Table 6.4: Predicted incremental annual average lead deposition (as total particulate) (g/m²/annum)           |   |
| for the MOD6 operational scenarios, with comparison to the PPR and BAU                                        | 2 |
| Table 6.5: Top five impacted receptors for annual average TSP concentrations for all modelled                 |   |
| scenarios with comparison to previous assessments                                                             | 5 |
| Table 6.6: Top five impacted receptors for annual average PM <sub>10</sub> concentrations for all modelled    |   |
| scenarios with comparison to previous assessments                                                             | 7 |
| Table 6.7: Top five impacted receptors for 24-hour maximum PM <sub>10</sub> concentrations for all modelled   |   |
| scenarios with comparison to previous assessments                                                             | 3 |
| Table 6.8: Top five impacted receptors for annual average PM <sub>2.5</sub> concentrations for all modelled   |   |
| scenarios with comparison to previous assessments                                                             | ) |
| Table 6.9: Top five impacted receptors for maximum 24-hour average $PM_{2.5}$ concentrations for all          |   |
| modelled scenarios with comparison to previous assessments                                                    |   |
| Table 6.10: Top five impacted receptors for incremental monthly deposited dust levels for all modelled        |   |
| scenarios with comparison to previous assessments                                                             | l |

# List of Figures

| Figure 1.1: Indicative Layout Option for Tailing Harvesting (Source: BHOP))                    | 2   |
|------------------------------------------------------------------------------------------------|-----|
| Figure 4.1: Site location and sensitive receptors                                              | 10  |
| Figure 6.1: Change in annual average lead concentration (in TSP) - MOD6 construction scenario  |     |
| minus MOD4 construction scenario                                                               | .18 |
| Figure 6.2: Change in annual lead concentration (in TSP) - MOD6 operational scenario minus PPR | 2   |
| scenario                                                                                       | .19 |
| Figure 6.3: Change in annual lead concentration (in TSP) - MOD6 operational scenario minus BAU | J   |
| scenario                                                                                       | .19 |
| Figure 6.4: Change in annual average lead deposition - MOD6 construction scenario minus MOD4   | ļ   |
| scenario (g/m²/annum)                                                                          | 24  |
| Figure 6.5: Change in annual average lead deposition - MOD6 operational scenario minus PPR     |     |
| scenario (g/m²/annum)                                                                          | .25 |
| Figure 6.6: Change in annual average lead deposition - MOD6 operational scenario minus BAU     |     |
| scenario (g/m²/annum)                                                                          | 25  |
|                                                                                                |     |

# Acronyms and Abbreviations

| Name              | Description                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------|
| AWS               | Automatic Weather Station                                                                               |
| BAU               | Business as Usual                                                                                       |
| BoM               | Bureau of Meteorology                                                                                   |
| BHOP              | Broken Hill Operations Pty Ltd                                                                          |
| CABC              | Confined Air Burst Chamber                                                                              |
| CBP               | Concrete Batching Plant                                                                                 |
| CML7              | Consolidated Mine Lease 7                                                                               |
| DDG               | Dust Deposition Gauge                                                                                   |
| DPIE              | Department of Planning, Industry and Environment                                                        |
| EA                | Environmental Assessment                                                                                |
| EP&A Act          | Environmental Planning and Assessment Act                                                               |
| EPA               | Environment Protection Authority                                                                        |
| g/m²              | Grams per square meter                                                                                  |
| Ktpa              | Kilotonnes per annum                                                                                    |
| HVAS              | High Volume Air Sampler                                                                                 |
| NSW               | New South Wales                                                                                         |
| Pb                | Lead                                                                                                    |
| PM                | (airborne) particulate matter                                                                           |
| PM <sub>10</sub>  | Airborne particulate matter with an aerodynamic diameter of less than 10 $\mu m$                        |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of less than 2.5 $\mu m$                       |
| PPR               | Preferred Project Report                                                                                |
| ROM               | Run of Mine                                                                                             |
| TEOM              | Tapered Element Oscillating Microbalances                                                               |
| TSF               | Tailings Storage Facility<br>TSF2 tailing stored in Blackwood Pit<br>TSF3 tailing stored in Kintore Pit |
| TSP               | Total Suspended Particulate (matter)                                                                    |
| UG                | Underground                                                                                             |
| WE                | Wind Erosion                                                                                            |
| WR                | Waste Rock                                                                                              |
| µg/m³             | Micrograms per cubic metre                                                                              |
|                   |                                                                                                         |

## 1. INTRODUCTION

ERM has been commissioned by Broken Hill Operations Pty Ltd (BHOP), a wholly owned subsidiary of CBH Resources Ltd (CBH), to complete an air quality impact assessment for a proposed modification to Rasp Mine, Broken Hill (MOD6). BHOP owns and operates the Mine under Consolidated Mine Lease 7 (CML7).

### 1.1 Background

The Rasp Mine (hereafter referred to as "the Mine") is an underground silver/zinc/lead operation located within the city limits of Broken Hill, NSW. Mining has been undertaken within CML7 since 1885. The existing operations at the Mine include underground mining operations, a processing plant producing zinc and lead concentrates, a rail siding for concentrate dispatch and other associated infrastructure. These operations are undertaken in accordance with Project Approval PA07\_0018, granted from the then Minister for Planning on 31 January 2011, under Part 3A of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

BHOP seeks to modify the Rasp Mine approval to:

- Establish Kintore Pit as tailing storage facility 3 (TSF3) with co-disposal of tailing with excess waste rock;
- Relocate the mine access portal and access decline with associated infrastructure, to a new boxcut;
- Utilise Blackwood Pit (TSF2) for drying and harvesting tailing;
- Conduct periodical crushing of non-ore material in Kintore Pit and/or BHP Pit;
- Utilise excess underground waste rock (<0.5% lead (Pb)) for rehabilitation capping.

The planned work will include:

- Tailings Harvesting and transfer to Kintore Pit (TSF3)
  - Preparation involves the harvesting of thin layers of dry tailing (30 50 cm) from the surface of TSF2 prior to stockpiling and transferring to TSF3. This would allow fresh tailing to be deposited into TSF2 which would be dried and removed, resulting in cyclical rotation of depositing, drying, harvesting and transfer tailing to Kintore Pit TSF3. An indicative layout for the tailing harvesting is shown in Figure 1.1.

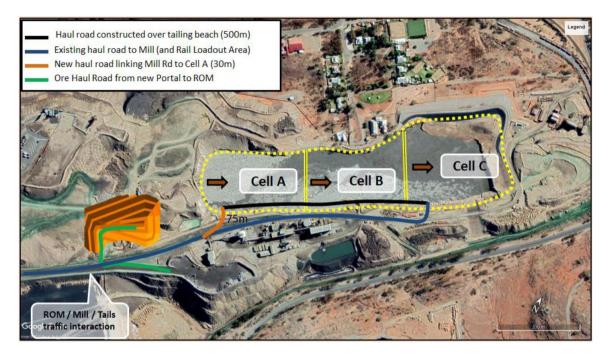



Figure 1.1: Indicative Layout Option for Tailing Harvesting (Source: BHOP))

- Relocation of Mine Access
  - Current underground mine access is via a portal located in Kintore Pit. It is proposed to establish a new portal to be located within a new boxcut.
- Rehabilitation Capping
  - Excess waste rock from underground mining, in particular any material that is greater than 0.5% lead, will be placed in Kintore Pit, and be co-disposed with tailing. Waste rock suitable for rehabilitation capping would be separated and placed on the current Kintore Pit Tipple or BHP Pit prior to confirmation testing of lead concentration. Waste rock that has a lead content greater than 0.5% would be permanently stored in Kintore Pit or taken underground for backfill or in the fill-in area of BHP Pit.
  - BHOP seek to commence rehabilitation activities over 'free areas' (non-active mining sites), across CML7 by using excess waste rock from underground that has been tested and contains less than 0.5% lead.

The proposed modification would:

- Permit mining at the Rasp Mine to continue post 2022 with additional storage of tailing;
- Significantly reduce the surface distance of hauling ore from underground to the ROM Pad thereby reducing impacts from noise and dust;
- Ensure continued employment of 186 full-time employees, 32 full-time contractors and indirectly over 200 casual contractors that provide specialist services when required;
- Engagement of approximately 20 contractors during construction and an additional 6 full time employees for operations;
- Allow the resource to be fully utilised; and
- Allow BHOP to continue to support the economic sustainability of Broken Hill.

The proximity of the Mine to the population of Broken Hill, and the cumulative emissions to air with existing operation of a similar nature in the vicinity, requires the completion of a detailed air quality

assessment to assess the potential for increased risk of exposure to lead (and other pollutants) by the community.

#### 1.2 Scope of Work

The following scope of work has been completed as part of the air quality assessment:

- Literature review
  - Brief literature review of relevant background documentation.
- Review and characterisation of the existing environment
  - Processing of site representative terrain and meteorology consistent with the methodology undertaken for previous air quality assessments to obtain a minimum one year of meteorological inputs suitable for use within an atmospheric dispersion model (AERMOD), and determining baseline local air quality based on 2014-2019 operations.
- Emissions estimation
  - Identification of all sources of particulate matter (PM) and lead bearing dust from mine activities and preparation of emissions inventories for total suspended particulates (TSP), particulate matter (both PM<sub>10</sub> and PM<sub>2.5</sub>) and lead (Pb).
  - The assessment has focused on three scenarios;
    - Business as Usual (BAU) this scenario presents a representative operational year of operations under the existing situation and consists of 100% of operations from the Kintore Pit portal.
    - MOD6 construction phase consisting of the construction period for the boxcut.
    - MOD6 operational phase consisting of the worst-case future operational year with 100% of operations from the new mine portal.
- Modelling and results presentation
  - Atmospheric dispersion modelling for three scenarios (BAU, MOD6 construction and MOD6 operational) and presentation of the predicted air quality impacts (TSP, PM<sub>10</sub>, PM<sub>25</sub>, dust deposition and Pb).
  - Results were compared against relevant air quality criteria at sensitive receptor locations.

# 2. AMBIENT AIR QUALITY CRITERIA

The Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (Approved Methods) (NSW EPA, 2017) specifies air quality assessment criteria relevant for assessing impacts from air pollution. The air quality goals relate to the total particulate matter (PM) burden in the air and not just the PM from the Mine. In other words, consideration of background PM needs to be made when using these goals to assess potential impacts. These criteria are health-based (i.e. they are set at levels to protect against health effects). These criteria are consistent with the National Environment Protection Measure for Ambient Air Quality (referred to as the Ambient Air-NEPM) (NEPC, 1998a), and the air quality criteria as listed in conditions for Project Approval 07\_0018.

Table 2.1 provides a summary of the air quality goals for pollutants that are relevant to this study. It is important to note that, with the exception of deposited dust, the criteria are applied to the cumulative impacts due to the proposed modification and other existing sources.

| Pollutant         | Standard                                                                          | Averaging Period |
|-------------------|-----------------------------------------------------------------------------------|------------------|
| TSP               | 90 μg/m <sup>3</sup>                                                              | Annual           |
| DM                | 25 μg/m <sup>3</sup>                                                              | Annual           |
| PM <sub>10</sub>  | 50 μg/m <sup>3</sup>                                                              | 24-Hour          |
|                   | 8 μg/m <sup>3</sup>                                                               | Annual           |
| PM <sub>2.5</sub> | 25 μg/m <sup>3</sup>                                                              | 24-Hour          |
| Pb (TSP fraction) | 0.5 µg/m <sup>3</sup>                                                             | Annual           |
| Deposited Dust    | 2 g/m <sup>2</sup> /month (incremental)<br>4 g/m <sup>2</sup> /month (cumulative) | Annual           |

#### Table 2.1: NSW EPA air quality impact assessment criteria

# 3. EMISSIONS INVENTORY

#### 3.1 Introduction

This assessment has focused on the following three scenarios:

 Business as Usual (BAU) – this scenario presents a representative operational year under the existing situation and consists of 100% of operations from the Kintore Pit portal. Emissions from this scenario will be compared against the latest approved emissions for operations (PPR) and the MOD6 Operational Scenario.

The annual material throughputs associated with the BAU scenario have been assumed to be:

- 720 kilotonnes per annum (ktpa) of ore
- 650 ktpa of tailing (all transported via piping to Blackwood Pit TSF2)
- 190 ktpa of total waste rock
- 2. Modification 6 Construction Scenario this scenario consists of the excavation of the box cut and installation of a new mine portal over a six month period, preparation works in Kintore Pit (for co-disposal of tailings and waste rock) and Blackwood Pit (for tailings harvesting). There will also be progressive rehabilitation from BHP Pit to Little Kintore Pit. Predicted impacts from this scenario will be compared against the latest approved predicted impacts for construction (MOD4 mine increments). Both the MOD6 construction scenario and the MOD4 scenario are presented as 'mine increments' inclusive of both construction activities as well as activities associated with ore handling and concentrate production.
- 3. Modification 6 Operational Scenario this scenario is considered a reasonable worst-case future operational year based on the greatest travel distances for waste rock capping projected for this year. This scenario includes progressive rehabilitation and 100% of operations from the new mine portal, and incorporates the proposed tailings harvesting and transfer from TSF2 to TSF3. Emissions from this scenario will be compared against the latest approved emissions for operations (PPR) and BAU Scenario.

The annual material throughputs associated with the MOD6 operational scenario have been assumed to be:

- 500 ktpa of ore
- 480 ktpa of tailing
- 146 ktpa of total waste rock
- 18 ktpa of waste rock to be rehabilitated as capping to Mount Hebbard

The assumptions in the emissions estimates are based on those documented within the Environ (2010) air quality assessment report for the Mine, which were repeated in subsequent air quality assessments (see Pacific Environment (2017a)) and are detailed in Appendix A (Table A.2 – BAU, Table A.4 – MOD6 construction and Table A.6 – MOD6 operational). Detailed information on mining operations were provided by BHOP.

To reflect the day to day variability in the construction activities for MOD6 construction scenario and the batch nature of the tailings harvesting activities during the MOD6 operational scenario, a daily worst case emissions scenario has been developed for  $PM_{10}$  and  $PM_{2.5}$  and assessed accordingly. This approach was not applied to the BAU scenario as operations are assumed to be broadly consistent throughout the year.

# 3.2 Percentage lead (Pb) composition

The calculation of potential Pb emissions for all non-road sources has been based on the percentage lead composition of different material substrates.

Compositional data on waste rock (used for stockpiling), free areas and disturbed areas (roads and areas of active mining) based on site-specific material sampling, has been made available for this assessment. These data are anticipated to provide a conservative estimate of Pb percentage composition of waste rock. The adopted percentage Pb compositions used in this assessment are as follows:

- Tailings = 0.3% Pb
- Waste rock = 0.5% Pb
- Free areas = 1.4% Pb
- Active mined areas = 1.9% Pb

For road sources, BHOP conducted Pb analyses of seven unpaved road sections at the site during August 2019. The results of these analyses are provided in Table 3.1.

| Unpaved road segment               | Material       | % lead |
|------------------------------------|----------------|--------|
| Central laydow n area road         | Unpaved Road A | 0.5%   |
| Road north of Kintore Pit          | Unpaved Road B | 0.8%   |
| Kintore Pit haul road              | Unpaved Road C | 0.5%   |
| Road to top of Mt Hebbard          | Unpaved Road D | 1.3%   |
| Road into BHP Pit                  | Unpaved Road F | 1.9%   |
| Road within processing plant       | Unpaved Road G | 1.1%   |
| Road to lookout over Blackwood pit | Unpaved Road H | 1.4%   |

#### Table 3.1: Unpaved roads percentage (%) lead breakdown

#### 3.3 Emission estimates

Emissions inventories contained in Appendix A. Table A.1 (BAU), Table A.3 (MOD6 construction) and Table A.5 (MOD6 operational) provide a summary of the annual TSP, PM and lead emissions estimates used in the dispersion modelling for the MOD6 construction and MOD6 operational scenarios, respectively.

Tables A.7 and A.8 provide a summary of the maximum 24-hour average  $PM_{10}$  and  $PM_{2.5}$  emissions estimates used in the dispersion modelling for the MOD6 construction and MOD6 operational scenarios, respectively.

#### 3.4 Particle size categories

Emission rates of TSP, PM<sub>10</sub> and PM<sub>2.5</sub> have been calculated using emission factors developed by the US EPA (US EPA, 1995) and routinely applied in NSW. Modelling was completed using the particle size specific inventories and was assumed to emit and deposit from the plume in accordance with the deposition rate appropriate for particles with an aerodynamic diameter equal to the geometric mass of the particle size range.

Modelling was completed for three particle size categories; TSP, PM<sub>10</sub> and PM<sub>2.5</sub>. The particle mass mean diameters were determined from particle size distribution data for various (coal) mining activities (presented in SPCC, 1986).

## 3.5 Control measures

All of the control measures included within Pacific Environment (2017a) for the modification 4 (MOD4) assessment (Pacific Environment, 2017a) apply for the current MOD6 assessment. These are summarised below:

- Wind erosion post-TSF2 closure for the MOD4 phase of the Mine, once the TSF was scheduled to close, it would be capped with waste rock. From field testing of this method, a control efficiency of 99% was deemed appropriate; and
- Dust suppression on haul roads a control efficiency of 80% was adopted for PM emissions on unpaved haul roads due to the application of a chemical suppressant.

The additional control measure specifically included as part of this MOD6 assessment is the inclusion of sealing the road from the new portal to the ROM pad entry for the MOD6 operational scenarios.

Additional operational measures have been introduced to decrease the overall PM emissions from the Project. PM emissions from haul trucks have been specifically addressed through the implementation of larger haul trucks for the future of the tailings harvesting operations from TSF2 to TSF3. Through doing this, PM emissions will be reduced as there will be fewer haul trucks required to transport material. This control method is suggested as part of the NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining (Katestone, 2011) with reported improvements of between 20% and 45%.

# 4. DISPERSION MODELLING

#### 4.1 Model selection

For consistency with the original environmental assessment (EA), and historical modelling and previous assessments (Pacific Environment 2011; 2013; 2015a; 2015b, 2016, 2017a), the current assessment has used the US-EPA regulatory model, AERMOD.

The air dispersion modelling conducted for this assessment represents an advanced modelling system using the AERMET/AERMOD model. AERMOD was selected as a suitable dispersion model due to the source types, location of nearest receptors and nature of local topography. AERMOD is the United States Environmental Protection Agency's (US EPA) recommended steady-state plume dispersion model for regulatory purposes. The AERMOD model was developed, and is supported by the US EPA and is now the model of choice for nearfield (less than 50 km from an emission source) applications in the US (US EPA, 2017).

A significant feature of AERMOD is that the Pasquill-Gifford stability based dispersion has been replaced with a turbulence-based approach that uses the Monin-Obukhov length scale to account for the effects of atmospheric turbulence based dispersion.

Site specific terrain information has been made available for this assessment. Pit retention has been applied to relevant sources only.

#### 4.2 Model Uncertainty

Atmospheric dispersion models represent a simplification of the many complex processes involved in determining ground level concentrations of substances.

Model uncertainty comprises of model chemistry/physics uncertainties, input data uncertainties, and stochastic uncertainties. In addition, there is inherent uncertainty in the behaviour of the random turbulence. The generic sources of uncertainty in dispersion models and their potential effects on this assessment are summarised in Table 4.1.

| Source                                                                  | Effects                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oversimplification of physics in model code (varies with type of model) | A variety of effects that can lead to both under-<br>prediction and over- prediction. Errors are greater in<br>Gaussian plume models, which do not include the<br>effects of non-steady-state meteorology (i.e.,<br>spatially- and temporally-varying meteorology).                                                                                                                                                    |
| Errors in emissions data                                                | Ground-level concentrations are proportional to<br>emission rate. Plume rise is affected by source<br>dimensions, temperature and exit velocity.<br>In this instance, latest mine plan information has<br>been used for emission estimation, with industry<br>standard emission estimation techniques adopted.<br>Where possible, site specific data (e.g. variable % Pb)<br>have been included to reduce uncertainty. |
| Errors in wind data                                                     | Wind direction affects direction of plume travel. Wind<br>speed affects plume rise and dilution of plume,<br>resulting in potential errors in distance of plume                                                                                                                                                                                                                                                        |

#### Table 4.1: Summary of main sources of modelling uncertainty

| Source                        | Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | impact from source, and magnitude of impact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | Local variation in wind patterns if evident, even<br>across the Rasp site. How ever, wind data from<br>Broken Hill airport is anticipated to be site<br>representative and is maintained to Bureau of<br>Meteorology standards.                                                                                                                                                                                                                                                                                                                                                                  |
| Errors in stability estimates | Gaussian plume models use estimates of stability<br>class, and 3-D models use explicit vertical profiles of<br>temperature and wind (which are used directly or<br>indirectly to estimate stability class for Gaussian<br>models). In either case, errors in these parameters<br>can cause either under prediction or over prediction<br>of ground-level concentrations.                                                                                                                                                                                                                         |
| Errors in temperature         | Usually the effects are small, but temperature affects<br>plume buoyancy, with potential errors in distance of<br>plume impact from source, and magnitude of impact.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | This is not anticipated to be a significant source of uncertainty given the non-buoyant, near-ground level nature of the emission sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inherent uncertainty          | Models predict 'ensemble mean' concentrations for<br>any specific set of input data (say on a 1-hour basis),<br>i.e., they predict the mean concentrations that would<br>result from a large set of observations under the<br>specific conditions being modelled. How ever, for any<br>specific hour with those exact mean hourly<br>conditions, the predicted ground-level concentrations<br>will never exactly match the actual pattern of ground-<br>level concentrations, due to the effects of random<br>turbulent motions and random fluctuations in other<br>factors such as temperature. |

A model uncertainty specific to the current assessment is the model predictions for lead deposition, discussed further in Section 5.2.2. In this case, the modelling predictions indicate that mine-only activities account for more than the observed lead deposition rates for the whole of Broken Hill, across a year. In other words, in this instance, the model is over-predicting relative to observations. From a regulatory perspective, it is acceptable (and even desirable) that dispersion models over-predict, since this allows for an additional level of conservatism within the assessment when predictions are compared to performance criteria.

# 4.3 Sensitive Receptors

The NSW EPA definition of sensitive receptors (NSW EPA, 2017) is:

"A location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area."

In total, 70 sensitive receptors have been included in this study. There are 42 from the original study (Environ, 2010a), seven receptors including the old bowling green and six playgrounds which were added as part of the MOD4 air quality assessment (Pacific Environment, 2017a). An additional 21

receptors have now been included in this assessment following a request from the Health Risk Assessment team for MOD6 (SLR/ToxConsult). Their locations are shown in Figure 4.1 and summary tables that describe each receptor are provided in Appendix F.

As mentioned, the original study (referred to as the Preferred Project Report (PPR) only assessed 42 receptors therefore a direct comparison between Receptors 43-70 cannot be made across PPR, BAU and MOD6 operational scenario. The modelling for MOD4 only assessed receptors 1 to 49; however, as the results are available for this modelling, results for receptors 50 to 70 could be interpolated.

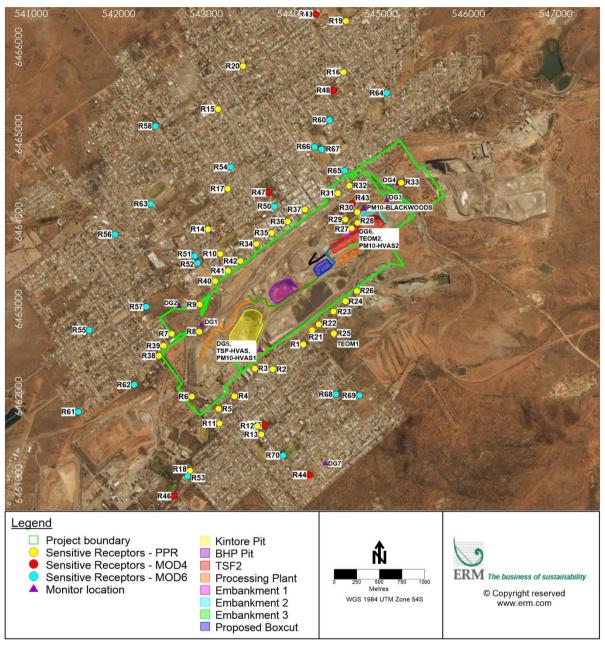



Figure 4.1: Site location and sensitive receptors

# 5. EXISTING ENVIRONMENT

# 5.1 Dispersion Meteorology

Air pollutant concentrations are strongly influenced by meteorological conditions, primarily in the form of prevailing wind directions and interactions with diurnal flow regimes. Wind speed, wind direction, temperature and relative humidity all affect the dispersion and transport of pollution, and are basic input requirements for dispersion modelling. The local meteorology for Broken Hill has been described in detail in Environ (2010) and Pacific Environment (2017a).

The assessment for MOD4 (Pacific Environment, 2017a), compiled a meteorological dataset for the year 2016 which was used in the dispersion modelling, representative of Broken Hill Airport. The annual and seasonal wind roses for 2016, 2017, 2018 and 2019 have been prepared and reviewed and are included in Appendix G. Across all four years mentioned the annual wind roses display a very similar wind distribution pattern, with the highest frequency of winds originating from the south. In the 2016 dataset the frequency of winds is more evenly spread across the south, south-southeast and south-southwest.

On the basis that the wind distribution pattern is similar across years and for comparison of results with MOD4, the 2016 meteorological dataset has been used in this assessment.

# 5.2 Local air quality

The following provides a description of the ambient air quality monitoring conducted at the mine:

- Three High Volume Air Samplers (HVAS) measuring Total Suspended Particulate (TSP) / particulate matter less than 10µm in aerodynamic diameter (PM<sub>10</sub>) and lead (Pb) concentrations at one location on site (PM<sub>10</sub> HVAS at TSF2), and one location offsite (TSP and PM<sub>10</sub> HVAS at Silver Tank);
- Two Tapered Element Oscillating Microbalances (TEOMs) measuring PM<sub>10</sub> at one location on site, and one offsite; and
- Seven Dust Deposition Gauges (DDGs) measuring dust deposition and % deposited Pb at seven locations; three on site, two on surface exclusion areas within the mining lease, and two offsite.

Locations of each of the monitors are shown in Figure 4.1.

Results from monitored data have been assessed to examine temporal trends between 2008 and 2019 (subject to data availability). The mean, maximum, minimum, median, standard deviation, 25<sup>th</sup> and 75<sup>th</sup> percentile statistics were then determined for each financial year (FY) period.

The current assessment has drawn on the extensive database of air quality monitoring reviewed up to end June 2019 to establish background air quality associated with the currently operating Rasp Mine and the contributions from other sources in the Broken Hill area (for example, wood fire smoke, other mines and quarries and agriculture).

The data show a trend of improvement in the local air quality up to 2017 across all parameters measured (TSP, PM<sub>10</sub>, Pb and deposited dust). From 2018 onwards, there was a trend of worsening local air quality which likely originated due to the drought conditions that covered regional NSW at the time.

Background data have been used that corresponds with the year of modelling, 2016. Given that there are several locations where  $PM_{10}$ , Pb and deposited dust have been measured, a representative background data set for each receptor has been based on the proximity of the sensitive receptor to a given monitoring location. Information on the allocated monitoring locations is provided in Appendix F. Monitoring data summary is provided in Appendix H.

# 5.2.1 Characterising background

As the Rasp Mine is operating, incremental PM contributions from the current operations are captured as a contribution to the Rasp Mine air quality monitoring network.

Therefore to provide a more accurate understanding of the 'background' conditions (i.e. in the absence of mine activities), the current operations of Rasp Mine have been modelled using known quantities of materials handled and haul truck movements. This approach is consistent with that used in Environ (2010) and repeated in Pacific Environment (2017a).

Background air quality has then been estimated referencing the ambient air quality monitoring data for 2016, minus Rasp Mine's contribution for the same (modelled) year. These adopted concentrations are considered broadly representative of the background contributions from other sources.

As mentioned above, Rasp Mine currently operates two TEOMs that are located in the vicinity of the sensitive receptors assessed in this study. Both of the TEOM data sets have been used in the assessment to provide a background  $PM_{10}$  concentration. For the receptors to the north of the Mine, the more representative data set is from TEOM 2 and for the receptors to the south of the Mine, the more representative dataset is from TEOM 1.

Similarly, to provide a receptor-specific background of Pb in TSP concentration, the annual average Pb concentration recorded at the TSP-HVAS monitor at Silver Tank for 2016 (0.23  $\mu$ g/m<sup>3</sup>) has been referenced, minus Rasp Mine's predicted contribution during the same (modelled) year.

No site-specific  $PM_{2.5}$  monitoring data is available for the study area. A  $PM_{2.5}/PM_{10}$  ratio has been calculated of 0.41, based on particle size ratios experienced in rural areas, and applied to the available on-site TEOM data.

# 5.2.2 Background lead deposition

The background annual lead deposition rates adopted for this assessment are  $0 \text{ g/m}^2/\text{year}$ . This is since the model predictions indicate that mine-only activities account for more than the observed lead deposition rates across a year. That is to say, the Pb dispersion modelling currently over-predicts Pb deposition with model results higher than monitored results at the majority of monitoring locations). Therefore adopting a background  $0 \text{ g/m}^2/\text{year}$  is considered a conservative approach.

A summary of the Pb (in TSP) emission estimates and adopted %Pb composition is provided in Section 3.2.

The model predictions for the other air quality metrics assessed in this study were below their equivalent monitored concentrations. This is not to say that the model has under-predicted the remaining air quality metrics, but rather the model over-prediction for Pb deposition demonstrates that the emission inventory inputs regarding percentage lead within the site materials are considered to be conservatively high.

Such a model over-prediction is not unexpected given the desire to adopt conservatively high assumptions within dispersion modelling exercises.

To be explicit, this does not suggest that there are no other potential sources of fugitive lead in Broken Hill outside of the boundary of CML7, but rather that this assessment demonstrates a conservative approach in the evaluation of potential lead impacts. Other sources of lead deposition in the Broken Hill area include industrial activities within Broken Hill (including other Pb mining activities) as well as natural / legacy emission sources from soils with elevated Pb levels that occur around the vicinity of the ore body.

On the basis of the above, to account for this model artefact no accounting of background Pb deposition is required when reconciling model predictions with observed levels of Pb deposition.

# 5.2.3 Background values for the assessment

The following provides a summary of the adopted background values (averaged monitored data less Rasp Mine modelled contribution for 2016) used for this assessment:

- PM<sub>10</sub> annual average concentration = (TEOM 1 = 13.0 μg/m<sup>3</sup>; TEOM 2 = 13.1 μg/m<sup>3</sup>)
- PM<sub>10</sub> 24-hour concentration = daily varying from either TEOM 1 or TEOM 2
- PM<sub>2.5</sub> annual average concentration = (TEOM 1 = 5.3 μg/m<sup>3</sup>; TEOM 2 = 5.7 μg/m<sup>3</sup>)<sup>1</sup>
- PM<sub>2.5</sub> 24-hour concentration = daily varying as ratio from either TEOM 1 or TEOM 2
- TSP annual average concentration =  $35.9 \,\mu g/m^3$
- Annual monthly average deposited dust =  $0.4 \text{ g/m}^2/\text{month}$  to 2.6 g/m<sup>2</sup>/month
- Annual average lead (TSP) concentration = 0.23 µg/m<sup>3</sup> (2016 annual average Pb at Silver Tank of 0.23 µg/m<sup>3</sup> minus modelled mine increment at each receptor for 2016)
- Annual lead deposition (TSP fraction)= 0 g/m<sup>2</sup>/annum

<sup>&</sup>lt;sup>1</sup> There were no  $PM_{2.5}$  monitoring data available to establish background concentrations. Therefore a  $PM_{2.5}$ :  $PM_{10}$  ratio of 0.41 has been adopted. This value was derived based on the  $PM_{2.5}$ :  $PM_{10}$  ratio for the OEH monitoring station at Wagga Wagga for 2016, as adopted in previous Rasp mine assessments.

# 6. AIR QUALITY IMPACT ASSESSMENT

Modelling was undertaken to determine incremental mine-related concentrations and deposition rates occurring due to operation of the Mine, combined with the construction of the new portal (termed 'Incremental MOD6').

For annual average lead concentration and lead deposition, results have been presented for all 70 receptors in the main body of the report.

For TSP, PM<sub>10</sub>, PM<sub>2.5</sub> and dust deposition, only the top five most impacted receptors (defined as the highest predicted incremental impact) have been presented in the main body of the report, for brevity. The full results tables for all receptors are provided in Appendix B.

A graphical representation of the results for the MOD6 construction scenario and MOD4 scenario are presented in Appendix C. A graphical representation of the results for the MOD6 operational scenario, PPR scenario and BAU scenario are presented in Appendix E.

Change plots of lead concentration / deposition predictions at sensitive receptor locations have been generated. These change plots indicate whether lead concentrations / deposition rates are anticipated to either increase or decrease relative to other modelling scenarios. Change plots are presented for the following comparable scenarios, based on incremental predictions:

- MOD6 construction scenario minus MOD4 construction scenario;
- MOD6 operational scenario minus PPR scenario; and
- MOD6 operational scenario minus BAU scenario.

Model results are expressed as the maximum predicted concentration for each averaging period at the sensitive receptors over a twelve month period.

The results for MOD4 have been taken from the response to submissions report. The results for MOD4 – increment and 'whole of mine' increment – are presented in Appendix C. To derive the MOD4 'whole of mine' results presented in the report, the construction increment (taken from the tables in the MOD4 report) have been added to the results of a model representing the baseline year 2016 increment.

The corresponding contour plots are included in Appendix I.

Throughout the section below, MOD6 construction scenario is compared against the approved MOD4 results for receptor 1 (R1) to receptor 70 (R70). MOD6 operations scenario is compared against the BAU (R1 to R70) and PPR scenarios (R1 to R42).

The results for PPR have been taken from the Air Quality Assessment Addendum – Proposed Relocation of the Processing Area (Environ, 2010b). From this report, the Scenario 2 results have been referenced as these are the most conservative.

#### 6.1 Annual average lead concentration

Table B.9 (MOD6 construction and MOD4) and B.1 (PPR, BAU and MOD6 operational) in Appendix B present incremental and cumulative annual average lead concentrations predicted to occur at nearby receptor locations for the scenarios mentioned. MOD6 construction scenario is compared against the approved MOD4 predictions. The MOD6 operational scenario is compared against the BAU and PPR scenarios. Figure I-1 (BAU scenario), Figure I-2 (MOD6 construction scenario) and Figure I-3 (MOD6 operations scenario) in Appendix I present contour plots for incremental annual average lead concentrations.

At all receptors, and for all scenarios, the cumulative annual average lead concentrations are predicted to be well below the NSW EPA impact assessment criterion of 0.5  $\mu$ g/m<sup>3</sup>, with ranges of 0.2248  $\mu$ g/m<sup>3</sup> to 0.2396  $\mu$ g/m<sup>3</sup> for the MOD6 construction scenario, and 0.2247  $\mu$ g/m<sup>3</sup> to 0.2412  $\mu$ g/m<sup>3</sup> for the MOD6 operational scenario. When looking at the incremental concentrations, these range from

 $0.0005 \ \mu g/m^3 - 0.0227 \ \mu g/m^3$  for the MOD6 construction scenario, and  $0.0005 - 0.0242 \ \mu g/m^3$  for the MOD6 operational scenario. The annual average monitored data for the modelled year of 2016 is  $0.23 \ \mu g/m^3$ .

Table 6.1 presents the predicted incremental annual average lead concentrations for the MOD6 construction scenario compared with the MOD4 construction scenario. The five most impacted receptors under the MOD6 construction scenario have been highlighted in green. At four of the five most impacted receptors (R26 to R29), there is a predicted increase between MOD4 and the MOD6 construction scenario.

| Receptor ID | MOD4   | MOD6   | Receptor ID | MOD4   | MOD6   |
|-------------|--------|--------|-------------|--------|--------|
| Criterion   | n/a    | n/a    | Criterion   | n/a    | n/a    |
| R1          | 0.0080 | 0.0085 | R36         | 0.0072 | 0.0086 |
| R2          | 0.0106 | 0.0084 | R37         | 0.0062 | 0.0078 |
| R3          | 0.0187 | 0.0152 | R38         | 0.0034 | 0.0030 |
| R4          | 0.0103 | 0.0073 | R39         | 0.0036 | 0.0032 |
| R5          | 0.0082 | 0.0062 | R40         | 0.0069 | 0.0056 |
| R6          | 0.0089 | 0.0065 | R41         | 0.0085 | 0.0069 |
| R7          | 0.0038 | 0.0036 | R42         | 0.0094 | 0.0084 |
| R8          | 0.0083 | 0.0072 | R43         | 0.0063 | 0.0098 |
| R9          | 0.0066 | 0.0056 | R44         | 0.0019 | 0.0017 |
| R10         | 0.0061 | 0.0055 | R45         | 0.0043 | 0.0036 |
| R11         | 0.0055 | 0.0044 | R46         | 0.0026 | 0.0021 |
| R12         | 0.0041 | 0.0036 | R47         | 0.0045 | 0.0047 |
| R13         | 0.0035 | 0.0032 | R48         | 0.0019 | 0.0021 |
| R14         | 0.0040 | 0.0039 | R49         | 0.0009 | 0.0009 |
| R15         | 0.0014 | 0.0014 | R50         | 0.0005 | 0.0062 |
| R16         | 0.0016 | 0.0017 | R51         | 0.0004 | 0.0036 |
| R17         | 0.0031 | 0.0032 | R52         | 0.0004 | 0.0038 |
| R18         | 0.0031 | 0.0026 | R53         | 0.0002 | 0.0025 |
| R19         | 0.0011 | 0.0011 | R54         | 0.0002 | 0.0026 |
| R20         | 0.0011 | 0.0011 | R55         | 0.0001 | 0.0012 |
| R21         | 0.0080 | 0.0099 | R56         | 0.0001 | 0.0012 |
| R22         | 0.0079 | 0.0106 | R57         | 0.0002 | 0.0024 |
| R23         | 0.0083 | 0.0127 | R58         | 0.0001 | 0.0010 |
| R24         | 0.0090 | 0.0140 | R59         | 0.0000 | 0.0005 |
| R25         | 0.0055 | 0.0072 | R60         | 0.0002 | 0.0027 |
| R26         | 0.0112 | 0.0193 | R61         | 0.0001 | 0.0012 |
| R27         | 0.0160 | 0.0227 | R62         | 0.0002 | 0.0024 |
| R28         | 0.0153 | 0.0192 | R63         | 0.0001 | 0.0016 |

Table 6.1: Predicted incremental annual average lead concentration (as TSP) (µg/m<sup>3</sup>) for the MOD6 construction scenario, with comparison to MOD4

| Receptor ID | MOD4   | M OD6  | Receptor ID | MOD4   | MOD6   |
|-------------|--------|--------|-------------|--------|--------|
| Criterion   | n/a    | n/a    | Criterion   | n/a    | n/a    |
| R29         | 0.0106 | 0.0150 | R64         | 0.0002 | 0.0020 |
| R30         | 0.0103 | 0.0131 | R65         | 0.0005 | 0.0053 |
| R31         | 0.0058 | 0.0075 | R66         | 0.0003 | 0.0037 |
| R32         | 0.0053 | 0.0068 | R67         | 0.0003 | 0.0038 |
| R33         | 0.0048 | 0.0073 | R68         | 0.0004 | 0.0029 |
| R34         | 0.0085 | 0.0086 | R69         | 0.0003 | 0.0024 |
| R35         | 0.0079 | 0.0087 | R70         | 0.0002 | 0.0023 |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

Table 6.2 shows presents the predicted incremental annual average lead concentrations for the MOD6 operational scenario compared with the PPR and BAU scenarios. The five most impacted receptors from the MOD6 operational scenario have been highlighted in green. At all of the most impacted receptors, there is a predicted decrease in annual average lead concentrations when comparing either the PPR or the BAU scenario to the MOD6 operational scenario.

| Table 6.2: Predicted incremental annual average lead concentration (as TSP) (µg/m <sup>3</sup> ) for the MOD6 |
|---------------------------------------------------------------------------------------------------------------|
| operational scenarios, with comparison to the PPR and BAU                                                     |

| Receptor<br>ID | PPR    | BAU    | MOD6   | Receptor<br>ID | PPR    | BAU    | MOD6   |
|----------------|--------|--------|--------|----------------|--------|--------|--------|
| Criterion      | n/a    | n/a    | n/a    | Criterion      | n/a    | n/a    | n/a    |
| R1             | 0.0100 | 0.0093 | 0.0085 | R36            | 0.0100 | 0.0089 | 0.0080 |
| R2             | 0.0120 | 0.0096 | 0.0087 | R37            | 0.0100 | 0.0081 | 0.0073 |
| R3             | 0.0260 | 0.0165 | 0.0150 | R38            | 0.0040 | 0.0034 | 0.0030 |
| R4             | 0.0200 | 0.0082 | 0.0074 | R39            | 0.0040 | 0.0035 | 0.0031 |
| R5             | 0.0180 | 0.0069 | 0.0062 | R40            | 0.0080 | 0.0064 | 0.0057 |
| R6             | 0.0140 | 0.0073 | 0.0065 | R41            | 0.0080 | 0.0078 | 0.0070 |
| R7             | 0.0040 | 0.0039 | 0.0036 | R42            | 0.0090 | 0.0092 | 0.0083 |
| R8             | 0.0090 | 0.0080 | 0.0071 | R43            | -      | 0.0110 | 0.0100 |
| R9             | 0.0080 | 0.0063 | 0.0056 | R44            | -      | 0.0018 | 0.0016 |
| R10            | 0.0060 | 0.0060 | 0.0054 | R45            | -      | 0.0040 | 0.0036 |
| R11            | 0.0070 | 0.0049 | 0.0044 | R46            | -      | 0.0023 | 0.0020 |
| R12            | 0.0050 | 0.0039 | 0.0036 | R47            | -      | 0.0050 | 0.0045 |
| R13            | 0.0050 | 0.0035 | 0.0032 | R48            | -      | 0.0022 | 0.0020 |
| R14            | 0.0040 | 0.0043 | 0.0039 | R49            | -      | 0.0010 | 0.0009 |
| R15            | 0.0020 | 0.0015 | 0.0013 | R50            | -      | 0.0065 | 0.0059 |
| R16            | 0.0020 | 0.0019 | 0.0017 | R51            | -      | 0.0040 | 0.0036 |

| Receptor<br>ID | PPR    | BAU    | M OD6  | Receptor<br>ID | PPR | BAU    | MOD6   |
|----------------|--------|--------|--------|----------------|-----|--------|--------|
| Criterion      | n/a    | n/a    | n/a    | Criterion      | n/a | n/a    | n/a    |
| R17            | 0.0040 | 0.0034 | 0.0031 | R52            | -   | 0.0043 | 0.0039 |
| R18            | 0.0030 | 0.0029 | 0.0026 | R53            | -   | 0.0027 | 0.0025 |
| R19            | 0.0020 | 0.0012 | 0.0011 | R54            | -   | 0.0028 | 0.0026 |
| R20            | 0.0020 | 0.0011 | 0.0010 | R55            | -   | 0.0013 | 0.0012 |
| R21            | 0.0130 | 0.0107 | 0.0096 | R56            | -   | 0.0013 | 0.0012 |
| R22            | 0.0140 | 0.0114 | 0.0101 | R57            | -   | 0.0026 | 0.0024 |
| R23            | 0.0170 | 0.0135 | 0.0120 | R58            | -   | 0.0010 | 0.0009 |
| R24            | 0.0240 | 0.0148 | 0.0131 | R59            | -   | 0.0005 | 0.0005 |
| R25            | 0.0090 | 0.0077 | 0.0070 | R60            | -   | 0.0029 | 0.0027 |
| R26            | 0.0330 | 0.0207 | 0.0186 | R61            | -   | 0.0013 | 0.0012 |
| R27            | 0.0360 | 0.0261 | 0.0242 | R62            | -   | 0.0026 | 0.0023 |
| R28            | 0.0260 | 0.0224 | 0.0207 | R63            | -   | 0.0017 | 0.0016 |
| R29            | 0.0220 | 0.0165 | 0.0151 | R64            | -   | 0.0022 | 0.0020 |
| R30            | 0.0170 | 0.0150 | 0.0137 | R65            | -   | 0.0058 | 0.0052 |
| R31            | 0.0100 | 0.0081 | 0.0073 | R66            | -   | 0.0040 | 0.0036 |
| R32            | 0.0090 | 0.0075 | 0.0068 | R67            | -   | 0.0040 | 0.0037 |
| R33            | 0.0100 | 0.0087 | 0.0078 | R68            | -   | 0.0032 | 0.0029 |
| R34            | 0.0090 | 0.0092 | 0.0083 | R69            | -   | 0.0026 | 0.0024 |
| R35            | 0.0090 | 0.0091 | 0.0082 | R70            | -   | 0.0025 | 0.0023 |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

The change plot for the MOD6 construction scenario versus MOD4 construction scenario (Figure 6.1) shows a net increase in annual average lead (as TSP) concentrations when compared with the MOD4 construction scenario. The maximum increase at any one receptor is anticipated to be 0.08  $\mu$ g/m<sup>-3</sup> and it is acknowledged that the MOD6 construction scenario will only occur within a single 12 month period.

The change plot for the MOD6 operational scenario versus PPR scenario for receptors R1 to R42 (Figure 6.2) shows a net decrease in annual average lead across all comparable receptors.

The change plot for the MOD6 operational scenario versus BAU scenario for receptors R1 to R70 (Figure 6.3) shows a predicted decrease in annual average lead (as TSP) concentrations at all sensitive receptor locations.

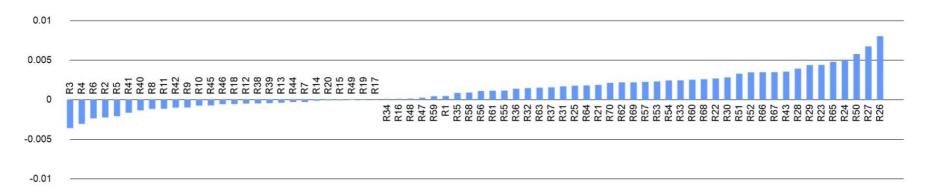



Figure 6.1: Change in annual average lead concentration (in TSP) - MOD6 construction scenario minus MOD4 construction scenario

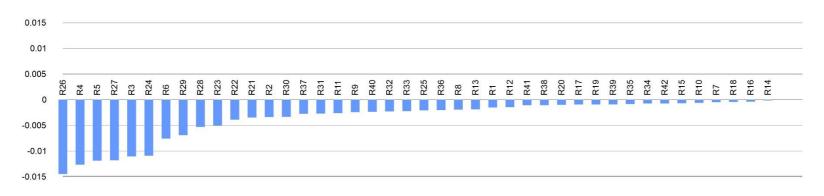
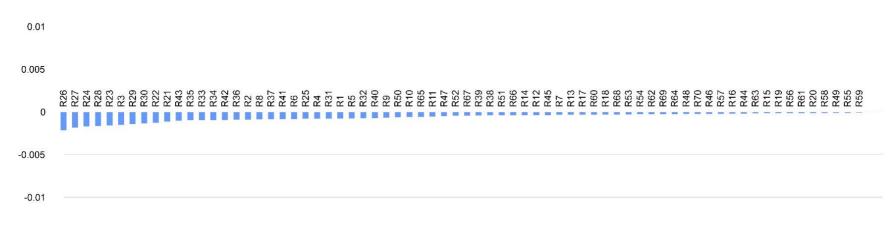




Figure 6.2: Change in annual lead concentration (in TSP) - MOD6 operational scenario minus PPR scenario



#### Figure 6.3: Change in annual lead concentration (in TSP) - MOD6 operational scenario minus BAU scenario

### 6.2 Annual average lead deposition

Table B.10 (MOD6 construction and MOD4) and B.2 (PPR, BAU and MOD6 operational) in Appendix B present the incremental and cumulative annual average lead deposition rates predicted to occur at nearby receptor locations for the scenarios mentioned. MOD6 construction scenario is compared against the approved MOD4 results. MOD6 operations scenario is compared against the BAU and PPR scenarios. Figure I-4 (BAU scenario), Figure I-5 (MOD6 construction scenario) and Figure I-6 (MOD6 operational scenario) in Appendix I present contour plots for the annual average lead deposition.

In Appendix I there are two spatial change plots. Figure I-25 presents the predicted change in annual average lead deposition spatially for MOD6 construction scenario compared to the MOD4 scenarios (MOD6 construction minus the MOD4 scenario). Figure I-26 presents the change in annual average lead deposition spatially for MOD6 operational scenario compared to the BAU scenario (MOD6 operational scenario minus the BAU scenario). In these figures the green represents a reduction in anticipated lead deposition rates as a result of MOD6 activities (an improvement in predicted lead deposition). The purple represents a predicted increase in lead deposition rates. In both figures, it can be seen that any increase in lead deposition is predominantly contained within the site boundary, and is reflective of the location of site activites changing between scenarios. The extent of the green contours supports the desire that there will be no net increase in lead deposition relative to the status quo.

There is no lead deposition impact assessment criterion referenced by the NSW EPA, however this information is referenced within the Health Risk Assessment for MOD6.

In addition, as identified in Section 5.2.2, no background lead deposition has been included in the cumulative results so the incremental and cumulative concentrations are thus the same. This is a very conservative approach as there would be some contribution from other sources to background levels.

Table 6.3 presents the predicted incremental annual average lead deposition for the MOD6 construction scenario compared with the MOD4 construction scenario. The five most impacted receptors from the MOD6 construction scenario have been highlighted in green. At all five of the most impacted receptors, there is a predicted increase between MOD4 and the MOD6 construction scenario. Fundamentally, this is as a result of more site activities occurring during MOD6 construction compared with MOD4, albeit for a short duration.

| Receptor ID | MOD4   | MOD6   | Receptor ID | MOD4   | MOD6   |
|-------------|--------|--------|-------------|--------|--------|
| Criterion   | n/a    | n/a    | Criterion   | n/a    | n/a    |
| R1          | 0.0187 | 0.0215 | R36         | 0.0118 | 0.0197 |
| R2          | 0.0226 | 0.0236 | R37         | 0.0119 | 0.0187 |
| R3          | 0.0347 | 0.0449 | R38         | 0.0041 | 0.0057 |
| R4          | 0.0206 | 0.0182 | R39         | 0.0043 | 0.0060 |
| R5          | 0.0139 | 0.0141 | R40         | 0.0127 | 0.0134 |
| R6          | 0.0134 | 0.0131 | R41         | 0.0151 | 0.0176 |
| R7          | 0.0047 | 0.0068 | R42         | 0.0168 | 0.0238 |
| R8          | 0.0126 | 0.0157 | R43         | 0.0056 | 0.0259 |
| R9          | 0.0095 | 0.0122 | R44         | 0.0027 | 0.0034 |

Table 6.3: Predicted incremental annual average lead deposition (as total particulate) (g/m<sup>2</sup>/annum) for the MOD6 construction scenario, with comparison to MOD4

| Receptor ID | MOD4   | MOD6   | Receptor ID | MOD4   | MOD6   |
|-------------|--------|--------|-------------|--------|--------|
| Criterion   | n/a    | n/a    | Criterion   | n/a    | n/a    |
| R10         | 0.0095 | 0.0125 | R45         | 0.0065 | 0.0081 |
| R11         | 0.0084 | 0.0098 | R46         | 0.0027 | 0.0039 |
| R12         | 0.0065 | 0.0081 | R47         | 0.0074 | 0.0113 |
| R13         | 0.0054 | 0.0070 | R48         | 0.0035 | 0.0049 |
| R14         | 0.0055 | 0.0079 | R49         | 0.0019 | 0.0024 |
| R15         | 0.0023 | 0.0032 | R50         | 0.0091 | 0.0145 |
| R16         | 0.0030 | 0.0041 | R51         | 0.0058 | 0.0073 |
| R17         | 0.0047 | 0.0070 | R52         | 0.0065 | 0.0079 |
| R18         | 0.0036 | 0.0051 | R53         | 0.0034 | 0.0048 |
| R19         | 0.0020 | 0.0027 | R54         | 0.0040 | 0.0058 |
| R20         | 0.0020 | 0.0026 | R55         | 0.0011 | 0.0020 |
| R21         | 0.0188 | 0.0251 | R56         | 0.0014 | 0.0021 |
| R22         | 0.0188 | 0.0267 | R57         | 0.0024 | 0.0040 |
| R23         | 0.0213 | 0.0314 | R58         | 0.0014 | 0.0020 |
| R24         | 0.0253 | 0.0357 | R59         | 0.0007 | 0.0010 |
| R25         | 0.0125 | 0.0178 | R60         | 0.0047 | 0.0066 |
| R26         | 0.0342 | 0.0474 | R61         | 0.0013 | 0.0021 |
| R27         | 0.0501 | 0.0596 | R62         | 0.0028 | 0.0042 |
| R28         | 0.0466 | 0.0483 | R63         | 0.0020 | 0.0030 |
| R29         | 0.0317 | 0.0402 | R64         | 0.0036 | 0.0048 |
| R30         | 0.0315 | 0.0335 | R65         | 0.0099 | 0.0132 |
| R31         | 0.0141 | 0.0191 | R66         | 0.0059 | 0.0086 |
| R32         | 0.0136 | 0.0174 | R67         | 0.0063 | 0.0090 |
| R33         | 0.0144 | 0.0196 | R68         | 0.0059 | 0.0073 |
| R34         | 0.0146 | 0.0238 | R69         | 0.0047 | 0.0059 |
| R35         | 0.0128 | 0.0216 | R70         | 0.0037 | 0.0049 |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

Table 6.4 presents the predicted incremental annual average lead deposition for the MOD6 operational scenario compared with the PPR and BAU scenarios. The five most impacted receptors from the MOD6 operational scenario have been highlighted in green. At all of the five most impacted receptors, there is a predicted decrease in annual average lead deposition from the PPR and BAU scenarios when compared to the MOD6 operational scenario.

# Table 6.4: Predicted incremental annual average lead deposition (as total particulate) (g/m²/annum)for the MOD6 operational scenarios, with comparison to the PPR and BAU

| Receptor<br>ID | PPR    | BAU    | M OD6  | Receptor<br>ID | PPR    | BAU    | MOD6   |
|----------------|--------|--------|--------|----------------|--------|--------|--------|
| Criterion      | n/a    | n/a    | n/a    | Criterion      | n/a    | n/a    | n/a    |
| R1             | 0.0400 | 0.0228 | 0.0223 | R36            | 0.0400 | 0.0195 | 0.0181 |
| R2             | 0.0500 | 0.0255 | 0.0249 | R37            | 0.0500 | 0.0184 | 0.0170 |
| R3             | 0.0900 | 0.0459 | 0.0451 | R38            | 0.0100 | 0.0062 | 0.0057 |
| R4             | 0.0600 | 0.0194 | 0.0185 | R39            | 0.0100 | 0.0066 | 0.0060 |
| R5             | 0.0400 | 0.0153 | 0.0143 | R40            | 0.0300 | 0.0152 | 0.0142 |
| R6             | 0.0400 | 0.0145 | 0.0132 | R41            | 0.0300 | 0.0196 | 0.0185 |
| R7             | 0.0100 | 0.0073 | 0.0068 | R42            | 0.0400 | 0.0258 | 0.0245 |
| R8             | 0.0300 | 0.0173 | 0.0160 | R43            | -      | 0.0290 | 0.0272 |
| R9             | 0.0200 | 0.0136 | 0.0126 | R44            | -      | 0.0037 | 0.0035 |
| R10            | 0.0200 | 0.0137 | 0.0129 | R45            | -      | 0.0087 | 0.0082 |
| R11            | 0.0200 | 0.0106 | 0.0099 | R46            | -      | 0.0042 | 0.0039 |
| R12            | 0.0200 | 0.0087 | 0.0082 | R47            | -      | 0.0117 | 0.0109 |
| R13            | 0.0100 | 0.0074 | 0.0070 | R48            | -      | 0.0052 | 0.0048 |
| R14            | 0.0100 | 0.0086 | 0.0081 | R49            | -      | 0.0026 | 0.0024 |
| R15            | 0.0100 | 0.0034 | 0.0031 | R50            | -      | 0.0148 | 0.0138 |
| R16            | 0.0100 | 0.0044 | 0.0041 | R51            | -      | 0.0081 | 0.0075 |
| R17            | 0.0100 | 0.0074 | 0.0069 | R52            | -      | 0.0088 | 0.0082 |
| R18            | 0.0100 | 0.0055 | 0.0051 | R53            | -      | 0.0052 | 0.0048 |
| R19            | 0.0100 | 0.0029 | 0.0027 | R54            | -      | 0.0061 | 0.0057 |
| R20            | 0.0100 | 0.0028 | 0.0026 | R55            | -      | 0.0021 | 0.0020 |
| R21            | 0.0500 | 0.0259 | 0.0250 | R56            | -      | 0.0023 | 0.0021 |
| R22            | 0.0600 | 0.0274 | 0.0260 | R57            | -      | 0.0043 | 0.0040 |
| R23            | 0.0800 | 0.0324 | 0.0298 | R58            | -      | 0.0022 | 0.0020 |
| R24            | 0.1100 | 0.0368 | 0.0336 | R59            | -      | 0.0011 | 0.0010 |
| R25            | 0.0400 | 0.0185 | 0.0175 | R60            | -      | 0.0070 | 0.0064 |
| R26            | 0.1500 | 0.0506 | 0.0460 | R61            | -      | 0.0023 | 0.0021 |
| R27            | 0.2000 | 0.0687 | 0.0672 | R62            | -      | 0.0045 | 0.0042 |
| R28            | 0.1500 | 0.0566 | 0.0550 | R63            | -      | 0.0032 | 0.0030 |
| R29            | 0.1400 | 0.0442 | 0.0422 | R64            | -      | 0.0053 | 0.0048 |
| R30            | 0.1000 | 0.0386 | 0.0365 | R65            | -      | 0.0143 | 0.0132 |
| R31            | 0.0600 | 0.0202 | 0.0188 | R66            | -      | 0.0090 | 0.0083 |
| R32            | 0.0500 | 0.0191 | 0.0178 | R67            | -      | 0.0095 | 0.0087 |
| R33            | 0.0500 | 0.0233 | 0.0207 | R68            | -      | 0.0078 | 0.0074 |
| R34            | 0.0400 | 0.0250 | 0.0236 | R69            | -      | 0.0063 | 0.0059 |

| Receptor<br>ID | PPR    | BAU    | M OD6  | Receptor<br>ID | PPR | BAU    | MOD6   |
|----------------|--------|--------|--------|----------------|-----|--------|--------|
| Criterion      | n/a    | n/a    | n/a    | Criterion      | n/a | n/a    | n/a    |
| R35            | 0.0400 | 0.0220 | 0.0206 | R70            | -   | 0.0052 | 0.0049 |
|                |        |        |        |                |     |        |        |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

The change plot for the MOD6 construction scenario versus MOD4 construction scenario (Figure 6.4) shows a net increase in annual average lead deposition when compared with the MOD4 construction scenario. The net increase is  $0.2348 \text{ g/m}^2$ /month and the MOD6 construction scenario will only last for 12 months.

The change plot for the MOD6 operational scenario versus PPR scenario for receptors R1 to R42 (Figure 6.5) shows a net decrease in annual average lead deposition across all receptors.

The change plot for the MOD6 operational scenario versus BAU scenario for receptors R1 to R70 (Figure 6.6) shows a predicted decrease in annual average lead deposition at all sensitive receptor locations.

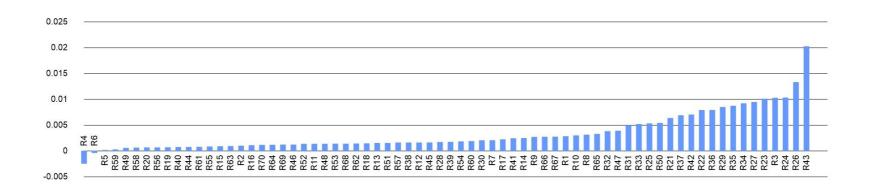



Figure 6.4: Change in annual average lead deposition - MOD6 construction scenario minus MOD4 scenario (g/m²/annum)

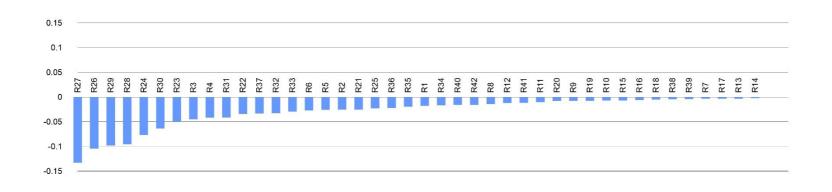



Figure 6.5: Change in annual average lead deposition - MOD6 operational scenario minus PPR scenario (g/m²/annum)

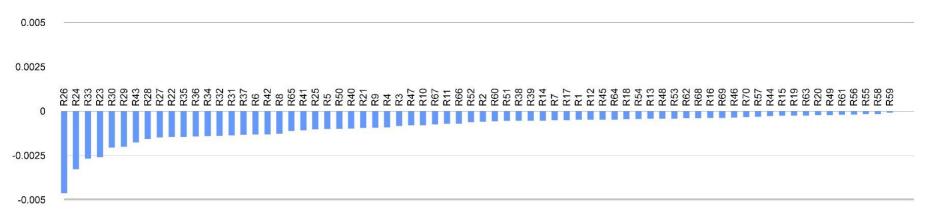



Figure 6.6: Change in annual average lead deposition - MOD6 operational scenario minus BAU scenario (g/m<sup>2</sup>/annum)

#### 6.3 Annual average TSP

Table B.11 (MOD6 construction and MOD4) and B.3 (PPR, BAU and MOD6 operational) in Appendix B present incremental and cumulative annual average TSP concentrations predicted to occur at nearby receptor locations for the scenarios mentioned. MOD6 construction scenario is compared against the approved MOD4 results. MOD6 operational scenario are compared against both the BAU and PPR scenarios. Figure I-7 (BAU scenario), Figure I-8 (MOD6 construction scenario) and Figure I-9 (MOD6 operations scenario) in Appendix I present contour plots for the incremental annual average TSP concentrations.

At all receptors, and for both scenarios, the cumulative annual average TSP concentrations are predicted to be well below the NSW EPA impact assessment criterion of 90  $\mu$ g/m<sup>3</sup>, with predicted cumulative concentrations ranging between 35.7  $\mu$ g/m<sup>-3</sup> and 36.6  $\mu$ g/m<sup>-3</sup> for the MOD6 construction scenario, and 35.7  $\mu$ g/m<sup>-3</sup> and 36.9 for the MOD6 operational scenario. When considering the incremental contribution, this ranges from 0.0 – 1.3  $\mu$ g/m<sup>3</sup> for the MOD6 construction scenario, and 0.0 – 1.8  $\mu$ g/m<sup>3</sup> for the MOD6 operational scenario.

As previously mentioned, for brevity only the top five most impacted receptors have been presented in the main body of the report. The full results tables for all receptors are provided in Appendix B.

Table 6.5 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The annual TSP concentrations at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

| Construction (µg/m <sup>3</sup> ) |        |        | Operation (µg/m <sup>3</sup> ) |        |        |        |  |
|-----------------------------------|--------|--------|--------------------------------|--------|--------|--------|--|
| Receptor                          | MOD4   | MOD6   | Receptor                       | PPR    | BAU    | MOD6   |  |
| R27                               | 0.9458 | 1.3177 | R27                            | 2.9000 | 1.5176 | 1.7633 |  |
| R3                                | 0.7510 | 1.1459 | R28                            | 2.3000 | 1.4941 | 1.4945 |  |
| R28                               | 1.0626 | 1.1365 | R3                             | 2.1000 | 1.3667 | 1.1396 |  |
| R26                               | 0.4746 | 0.9961 | R29                            | 2.2000 | 0.9305 | 0.9934 |  |
| R29                               | 0.5238 | 0.8926 | R30                            | 1.7000 | 0.9991 | 0.9164 |  |

Table 6.5: Top five impacted receptors for annual average TSP concentrations for all modelled scenarios with comparison to previous assessments

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

#### 6.4 Annual and maximum 24-hour average PM<sub>10</sub>

Table B.12 (MOD6 construction and MOD4) in Appendix B present predicted incremental and cumulative annual and maximum 24-hour PM<sub>10</sub>, Table B.4 (PPR, BAU and MOD6 operational) present the incremental and cumulative annual average PM<sub>10</sub> and Table B.5 (PPR, BAU and MOD6 operational) present incremental and cumulative maximum 24-hour average PM<sub>10</sub> concentrations predicted to occur at nearby receptor locations for the scenarios mentioned. The MOD6 construction scenario is compared against the approved MOD4 predictions. The MOD6 operational scenario is compared against the BAU and PPR scenarios. Figure I-10 (BAU scenario), Figure I-11 (MOD6 construction scenario) and Figure I-12 (MOD6 operations scenario) in Appendix I present contour plots for the incremental annual average PM<sub>10</sub> concentrations.

Figure I-19 (BAU scenario), Figure I-20 (MOD6 construction scenario) and Figure I-21 (MOD6 operations scenario) in Appendix I present contour plots for the incremental maximum 24-hour average PM<sub>10</sub> concentrations. It should be noted that the maximum 24-hour average contour plots do not represent the dispersion pattern on any individual day. Rather, they illustrate an ensemble of the maximum concentrations simulated to be possible at each gridded receptor point across the modelling domain given the range of meteorological conditions occurring over the period modelled.

At all receptors, for both the MOD6 construction and MOD6 operational scenarios, the predicted cumulative annual average  $PM_{10}$  concentrations are well below the NSW EPA impact assessment criterion of 25 µg/m<sup>3</sup> with cumulative concentrations ranging from 12.8 to 13.5 µg/m<sup>-3</sup> for the MOD6 construction scenario and 12.8 to 13.6 µg/m<sup>-3</sup> for the MOD6 operational scenario. When considering the incremental concentrations, these range from 0.0 to 0.9 µg/m<sup>3</sup> for MOD6 construction scenario and 0.0 to 1.0 µg/m<sup>3</sup> for the MOD6 operational scenario.

As previously mentioned, for brevity, only the top five most impacted receptors have been presented in the main body of the report. The full results tables for all receptors are provided in Appendix B.

Table 6.6 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The annual average  $PM_{10}$  concentrations at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

| Construction (µg/m³) |        |        | Operation (µg/m³) |        |        |        |
|----------------------|--------|--------|-------------------|--------|--------|--------|
| Receptor             | MOD4   | MOD6   | Receptor          | PPR    | BAU    | MOD6   |
| R27                  | 0.6583 | 0.8857 | R27               | 1.0000 | 1.0421 | 1.0271 |
| R3                   | 0.5425 | 0.7870 | R28               | 0.8000 | 0.9952 | 0.9032 |
| R28                  | 0.650  | 0.786  | R3                | 0.8000 | 0.8014 | 0.6381 |
| R26                  | 0.3826 | 0.6322 | R29               | 0.7000 | 0.6664 | 0.6019 |
| R29                  | 0.415  | 0.609  | R30               | 0.6000 | 0.6833 | 0.5639 |

Table 6.6: Top five impacted receptors for annual average PM<sub>10</sub> concentrations for all modelled scenarios with comparison to previous assessments

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

Figure C-4 in Appendix C presents bar charts for annual average PM<sub>10</sub> concentrations for MOD4 and MOD6 construction scenario. Figure E-4 in Appendix E presents bar charts for annual average PM<sub>10</sub> concentraitons for BAU, PPR and MOD6 operational scenario.

At all receptors, for both the MOD6 construction and MOD6 operational scenarios, the predicted cumulative 24-hour average  $PM_{10}$  concentrations are predicted to be below the NSW EPA impact assessment criterion of 50 µg/m<sup>3</sup> with cumulative concentrations ranging from 36.1 to 46.6 µg/m<sup>3</sup> for the MOD6 construction scenario and 36.1 to 46.9 µg/m<sup>3</sup> for the MOD6 operational scenario. When considering the incremental concentrations, these range from 0.5 to 14.2 µg/m<sup>3</sup> for MOD6 construction scenario and 0.3 to 6.4 µg/m<sup>3</sup> for the MOD6 operational scenario.

Table 6.7 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The 24-hour maximum  $PM_{10}$  concentrations at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

| Construction (µg/m <sup>3</sup> ) |        | Operation (µg/m <sup>3</sup> ) |          |        |        |        |
|-----------------------------------|--------|--------------------------------|----------|--------|--------|--------|
| Receptor                          | MOD4   | MOD6                           | Receptor | PPR    | BAU    | MOD6   |
| R27                               | 7.7474 | 14.2086                        | R27      | 7.4000 | 6.0472 | 6.4369 |
| R26                               | 2.4264 | 13.0068                        | R28      | 4.7000 | 6.6168 | 6.3830 |
| R28                               | 6.0291 | 11.4778                        | R3       | 5.1000 | 5.2081 | 4.6228 |
| R35                               | 1.7486 | 10.3788                        | R2       | 3.1000 | 5.0692 | 4.5000 |
| R29                               | 2.3024 | 9.1361                         | R29      | 3.8000 | 3.7467 | 4.0163 |

 Table 6.7: Top five impacted receptors for 24-hour maximum PM<sub>10</sub> concentrations for all modelled scenarios with comparison to previous assessments

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

The results presented in Table 6.7 show that while maximum 24-hour average  $PM_{10}$  concentrations are predicted to increase above the values presented in the MOD4 construction scenario, these values are anticipated to reduce to at or below concentrations predicted under previous operational scenarios (i.e. PPR and BAU) once MOD6 is operational. All MOD6 increments are well within the (cumulative) NSW EPA impact assessment criterion of 50 µg/m<sup>3</sup>.

Figure C-7 in Appendix C presents bar charts for maximum 24-hour average  $PM_{10}$  concentrations for MOD4 and MOD6 construction scenario. Figure E-7 in Appendix E presents bar charts for maximum 24-hour average  $PM_{10}$  concentrations for BAU, PPR and MOD6 operational scenario. To determine the 24-hour cumulative concentrations, a contemporaneous assessment was adopted. This assessment combines the monitored background daily 24-hour average  $PM_{10}$  concentrations with the predicted project incremental concentration. For each of the scenarios modelled, the maximum 24-hour average prediction at each receptor ranged between 36  $\mu$ g/m<sup>3</sup> and 47  $\mu$ g/m<sup>3</sup>. Review of the time series data for the receptors indicates that these reported maxima are heavily influenced by the contribution of the background rather than Rasp Mine related increments.

The MOD6 construction scenario had the highest maximum incremental 24-hour average contribution of all the scenarios. This result was recorded at Receptor 27, Proprietary Square, due to its proximity to the boxcut construction works. The maximum 24-hour average increment at R27 is predicted to be 14.2  $\mu$ g/m<sup>3</sup>, approximately 28% of the NSW EPA impact assessment criterion of 50  $\mu$ g/m<sup>3</sup>. The

cumulative concentration at this receptor is 46.6  $\mu\text{g/m}^3$  which is below the NSW EPA impact assessment criterion.

For the MOD6 operational scenario, the maximum incremental 24-hour average contribution was also at receptor R27. The maximum 24-hour average increment at R27 is predicted to be 6.4  $\mu$ g/m<sup>3</sup>, approximately 13% of the NSW EPA impact assessment criterion of 50  $\mu$ g/m<sup>3</sup>. The cumulative concentration at this receptor is 46.9  $\mu$ g/m<sup>3</sup> which is below the NSW EPA impact assessment criterion.

#### 6.5 Annual and maximum 24-Hour average PM<sub>2.5</sub>

Table B.13 (MOD6 construction and MOD4) and B.6 (PPR, BAU and MOD6 operational) in Appendix B present incremental and cumulative annual average PM<sub>2.5</sub> concentrations predicted to occur at nearby receptor locations for the scenarios mentioned. Table B.13 (MOD6 construction and MOD4) and B.7 (PPR, BAU and MOD6 operationa) in Appendix B present incremental and cumulative maximum 24-hour average PM<sub>10</sub> concentrations predicted to occur at nearby receptor locations for the scenarios mentioned. Figure I-13 (BAU scenario), Figure I-14 (MOD6 construction scenario) and Figure I-15 (MOD6 operations scenario) in Appendix I present contour plots for incremental annual average PM<sub>2.5</sub> concentrations. Figure I-22 (BAU scenario), Figure I-23 (MOD6 construction scenario) and Figure I-24 (MOD6 operations scenario) in Appendix I present contour plots for incremental annual average PM<sub>2.5</sub> concentrations scenario) in Appendix I present contour plots for incremental annual average PM<sub>2.5</sub> concentrations. Figure I-22 (BAU scenario), Figure I-23 (MOD6 construction scenario) and Figure I-24 (MOD6 operations scenario) in Appendix I present contour plots for incremental maximum 24-hour average PM<sub>2.5</sub> concentrations.

At all receptors, and for both the MOD6 construction and MOD6 operational scenarios, the predicted cumulative annual average  $PM_{2.5}$  concentrations are below the NSW EPA impact assessment criterion of 8 µg/m<sup>3</sup>, with cumulative predictions ranging from 5.3 to 5.5 µg/m<sup>3</sup> for MOD6 construction scenario and 5.3 to 5.5 µg/m<sup>3</sup> for MOD6 operational scenario. When considering the incremental contributions, these range from 0.0111 – 0.3 µg/m<sup>3</sup> for the MOD6 construction scenario and 0.0 to 0.3 µg/m<sup>3</sup> for the MOD6 operational scenario.

Table 6.8 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The annual average  $PM_{2.5}$  concentrations at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

| Construction (µg/m <sup>3</sup> ) |        | Operation (µg/m <sup>3</sup> ) |          |        |        |        |
|-----------------------------------|--------|--------------------------------|----------|--------|--------|--------|
| Receptor                          | MOD4   | MOD6                           | Receptor | PPR    | BAU    | MOD6   |
| R27                               | 0.1735 | 0.2583                         | R27      | 0.2500 | 0.3104 | 0.2799 |
| R3                                | 0.1256 | 0.2413                         | R28      | 0.2100 | 0.3061 | 0.2488 |
| R26                               | 0.0997 | 0.2322                         | R26      | 0.2000 | 0.2463 | 0.2169 |
| R28                               | 0.1806 | 0.2308                         | R3       | 0.2400 | 0.2079 | 0.2011 |
| R29                               | 0.1059 | 0.1853                         | R29      | 0.1900 | 0.2129 | 0.1833 |

 Table 6.8: Top five impacted receptors for annual average PM<sub>2.5</sub> concentrations for all modelled scenarios with comparison to previous assessments

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

At all receptors, and for both the MOD6 construction and MOD6 operational scenarios, the predicted cumulative 24-hour average  $PM_{2.5}$  concentrations are predicted to be below the NSW impact assessment criterion of 25 µg/m<sup>3</sup>, with ranges of 14.8 to 19.0 µg/m<sup>3</sup> for the MOD6 construction scenario and 14.8 to 18.9 µg/m<sup>3</sup> for the MOD6 operations scenario. When considering the incremental contributions, these range from 0.2 – 4.0 for the MOD6 construction scenario, and 0.1 – 1.9 µg/m<sup>3</sup> for the MOD6 operational scenario.

Table 6.9 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The incremental maximum 24-hour average PM<sub>2.5</sub> concentrations at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

| Construction (µg/m <sup>3</sup> ) |        | Operation (µg/m³) |          |        |        |        |
|-----------------------------------|--------|-------------------|----------|--------|--------|--------|
| Receptor                          | MOD4   | MOD6              | Receptor | PPR    | BAU    | MOD6   |
| R27                               | 1.6473 | 4.0044            | R28      | 1.6000 | 2.2321 | 1.944  |
| R26                               | 0.5946 | 3.7679            | R27      | 2.3000 | 2.0047 | 1.7737 |
| R28                               | 1.5429 | 3.2632            | R26      | 1.8000 | 1.8022 | 1.6030 |
| R35                               | 0.4657 | 3.0729            | R3       | 1.5000 | 1.4889 | 1.4767 |
| R29                               | 0.7889 | 2.8169            | R29      | 1.3000 | 1.4099 | 1.3841 |

Table 6.9: Top five impacted receptors for maximum 24-hour average PM<sub>2.5</sub> concentrations for all modelled scenarios with comparison to previous assessments

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

As for  $PM_{10}$ , a contemporaneous assessment has been adopted here. For each of the scenarios modelled the maximum 24-hour average  $PM_{2.5}$  cumulative prediction varies between 15 µg/m<sup>3</sup> and 19 µg/m<sup>3</sup> (Appendix B Table B.7) and as with  $PM_{10}$ , these reported maxima are heavily influenced by the contribution of the background rather than Rasp Mine related increments.

The receptor that is predicted to experience the maximum incremental 24-hour average  $PM_{25}$  contribution for the MOD6 construction scenario is R27, due to its proximity to the boxcut construction works. The maximum 24-hour average  $PM_{2.5}$  increment at R27 is predicted to be 4.0 µg/m<sup>3</sup> with a cumulative prediction of 18.9 µg/m<sup>3</sup> or 76% of the NSW impact assessment criterion of 25 µg/m<sup>3</sup>.

For the MOD6 operational scenario, the maximum incremental 24-hour average contribution was at R28. The maximum 24-hour average  $PM_{2.5}$  increment at R28 is predicted to be 1.9 µg/m<sup>3</sup> with a cumulative prediction of 18.9 µg/m<sup>3</sup>, approximately 76% of the NSW EPA impact assessment criterion of 25 µg/m<sup>3</sup>.

#### 6.6 Monthly average deposited dust

Table B.14 (MOD6 construction and MOD4) and B.8 (PPR, BAU and MOD6 operational) in Appendix B present incremental and cumulative monthly average dust deposition rates predicted to occur at nearby receptor locations for the scenarios mentioned. MOD6 construction scenario is compared against the approved MOD4 results and MOD6 future operations is compared against the BAU and PPR scenarios. Figure I-16 (BAU scenario), Figure I-17 (MOD6 construction scenario) and Figure I-18

(MOD6 operations scenario) in Appendix I presents contour plots for incremental monthly average deposited dust.

At all receptors, for both the MOD6 construction and MOD6 operational scenarios, the predicted incremental monthly dust deposition rates are below the NSW EPA impact assessment criterion of 2 g/m<sup>2</sup>/month. The dust deposition rates range between 0.0 and 0.3 g/m<sup>2</sup>/month for the MOD6 construction scenario and between 0.0 and 0.4 g/m<sup>2</sup>/month for the MOD6 operational scenario.

Similarly, at all receptors, for both the MOD6 construction and MOD6 operational scenarios, the predicted cumulative monthly dust deposition levels are below the NSW EPA impact assessment criterion of 4 g/m<sup>2</sup>/month. The dust deposition levels range between 0.3977 and 3.3771 g/m<sup>2</sup>/month for the MOD6 construction scenario and 0.3978 and 3.5576 g/m<sup>2</sup>/month for the MOD6 operational scenario.

Table 6.10 shows the five most impacted receptors for the MOD6 construction scenario and the MOD6 operational scenario. The monthly deposited dust at the respective receptors for the MOD4, PPR and BAU scenarios have been included for comparison.

Table 6.10: Top five impacted receptors for incremental monthly deposited dust levels for all modelled scenarios with comparison to previous assessments

| Construction (g/m <sup>2</sup> /month) |        | Operation (g/m <sup>2</sup> /month) |          |        |        |        |
|----------------------------------------|--------|-------------------------------------|----------|--------|--------|--------|
| Receptor                               | MOD4   | MOD6                                | Receptor | PPR    | BAU    | MOD6   |
| R27                                    | 0.3199 | 0.2939                              | R27      | 0.4700 | 0.3167 | 0.4744 |
| R3                                     | 0.1970 | 0.2761                              | R28      | 0.3700 | 0.2939 | 0.3895 |
| R28                                    | 0.3308 | 0.2455                              | R3       | 0.3200 | 0.2858 | 0.2804 |
| R26                                    | 0.1330 | 0.2227                              | R29      | 0.3400 | 0.1982 | 0.2654 |
| R29                                    | 0.1597 | 0.2093                              | R30      | 0.2600 | 0.2028 | 0.2354 |

Note: The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

#### 6.7 Cumulative impacts associated with the Broken Hill North Mine

In February 2017 the air quality assessment (Pacific Environment, 2017b) for the Broken Hill North Mine Recommencement Project (Broken Hill North Mine) was released for public exhibition by the NSW Department of Planning (Pacific Environment, 2017b).

The Broken Hill North Mine is located to the north east of Rasp Mine and therefore PM emissions from this source would have the potential to result in cumulative impacts when combined with predictions associated with the Rasp Mine.

It is important to acknowledge any potential changes in local air quality as a result of Broken Hill North Mine's potential future operations. Pacific Environment (2017b) has provided tabulated results for the short term and long term air quality metrics, including PM<sub>10</sub>, PM<sub>2.5</sub>, TSP, dust deposition and lead concentration. No data were presented for lead deposition and therefore this cumulative assessment are limited to these metrics.

The receptor locations adopted within Pacific Environment (2017b) have been compared with those that have been adopted for this assessment.

There are eight receptors that align with those used in Broken Hill North Mine air quality assessment such that impacts can be evaluated cumulatively. These receptors comprise R2, R11, R17, R18 R23, R24, R32 and R43 from the Rasp Mine receptor list.

At each of these receptors, the available maximum predictions for Broken Hill North Mine have been combined with the model results that have been compiled for this assessment. The annual average predictions for  $PM_{10}$  and  $PM_{2.5}$  are presented in Table B-15 in Appendix B. The maximum 24-hour average predictions for  $PM_{10}$  and  $PM_{2.5}$  are presented in Table B-16. The results for annual average TSP, monthly dust deposition and annual average lead concentration are presented in Table B-17.

The tabulated results presented in Pacific Environment (2017b) are limited to one decimal place consequently results for some residences have been reported as  $0.0 \,\mu\text{g/m}^3$ . It has therefore been assumed that in these instances where the model prediction is  $0.0 \,\mu\text{g/m}^3$  that the contribution of Broken Hill North Mine is negligible.

In the case of lead concentration predictions the results have only been provided for the most impacted of the discrete receptors assessed (39 in total). In the absence of a full data set, a conservative approach has therefore been adopted by assuming a uniform annual average Pb concentration of 0.006  $\mu$ g/m<sup>3</sup> from the Broken Hill North Mine across all receptors. This value represents the largest predicted increment across the most impacted receptors.

For all of the air quality metrics assessed the cumulative results that combine emissions from the proposed MOD6, the proposed Broken Hill North Mine Recommencement Project and contributions from other background sources are all below the NSW impact assessment criteria at the nominated receptors.

Without additional knowledge as to the Broken Hill North Mine's proposed scheduling, it should further be acknowledged that the two activities may or may not be undertaken at the same time, and as such the above discussion of cumulative impacts should be regarded as worst-case.

#### 7. DUST MANAGEMENT

An additional aspect of the assessment process is to evaluate current and future operational dust management practices for the Mine. The following aspects are discussed for consideration in future dust management for the site.

#### 7.1 Real-time PM and Meteorological Monitoring

As described in Section 5.2, the current BHOP air quality monitoring network comprises three HVAS, two TEOMs, two ES642 PM<sub>10</sub> monitors and seven DDGs.

Monitoring is anticipated to continue at these locations, and could be supplemented with additional monitoring locations representative of conditions at the TSF tailings harvesting.

By combining these real-time observations with telemetry and readily available software, it is possible to introduce SMS or email alerts to relevant site personnel when critical PM concentrations or wind speeds occur. Site representative have confirmed that this is already being done with the two ES642 PM<sub>10</sub> monitors. These instruments could be relocated to monitor the proposed TSF tailings harvesting.

A short-term average (e.g. 1-hour average)  $PM_{10}$  performance indicator can be set at a concentration that allows proactive dust management to be implemented in the event that PM concentrations are increasing, and may potentially approach the 24-hour  $PM_{10}$  impact assessment criterion in the near future.

The field investigations presented as part of the MOD4 AQIA (Pacific Environment, 2017a) indicate that a critical wind speed of 11 m/s (40 km/hr; measured at 10m) should be used as an initial alert value to trigger further investigation and remedial action as this is the threshold friction velocity where dust entrainment may occur. At wind speeds of 40 km/hr, Trigger 1 of the site's Air Quality Management Plan (AQMP) Trigger Action Response Plan (TARP) requires a review of construction activities and application of water to the TSF surface.

Winds that reach 14 m/s (50 km/hr) should be used as the critical wind speed alarm value when immediate action is required (i.e. implementation of TSF water sprays or chemical dust suppressant). A review of the onsite meteorological data indicates that winds exceeding 11m/s may occur 1.3% of the time (or 112 hours per year) and exceeding 14 m/s 0.02% of the time (or 2 hours per year). Site At 50 km/hr, the AQMP TARP Trigger 2 requires cessation of construction activities and engage TSF water sprays.

In addition, a particulate matter concentration an alarm and alert system may also be implemented. Default values adopted at other extractive industry sites for the 1-hour average concentration are  $80\mu g/m^3$  as an alert / investigation level and  $100 \ \mu g/m^3$  as an alarm requiring immediate rectification. Currently, the AQMP TARP uses one-hour average PM<sub>10</sub> above 50  $\mu g/m^3$  as Trigger 1 and one-hour average PM<sub>10</sub> above 100  $\mu g/m^3$  as Trigger 2.

Alert/alarm values may be reviewed iteratively to ensure that they are sufficiently protective without generating excessive false alarms.

The monitoring network would be reviewed and augmented (if warranted) to provide additional data relevant to the proposed activities at TSF2.

It is suggested that an augmentation to the existing PM monitoring might include a mobile PM / wind speed monitoring unit that can be placed close to the TSF surface and progressively moved as the TSF is filled. This will be explored further in the operational air quality management plan for the MOD6 works.

#### 7.2 Predictive / Forecast Meteorology and Real Time Management

An additional component of proactive dust management would be a meteorological forecasting system. This system is used to predict meteorological conditions for the coming day(s) to determine,

at a minimum one day in advance, when an elevated risk of PM emissions may occur (e.g. based on wind speed, direction, rainfall and atmospheric stability). The site is already receiving daily and weekly forecasts from Weather Intelligence.

The predictive meteorological forecasting system would provide simple indicators of the following day's dust risk, based on meteorological conditions that are known to have adverse impacts, and would allow mine personnel to put measures into place in advance. An example of such preparatory measures would include:

- scheduling additional water cart operations / chemical dust suppressant application;
- planning for modifying or relocating certain activities; and
- scheduling maintenance on equipment.

#### 7.3 Greenhouse Gas Emissions

The World Resources Institute / World Business Council for Sustainable Development Greenhouse Gas Protocol (the GHG Protocol) originally documented the different scopes for greenhouse gas (GHG) emission inventories. The GHG Protocol is the most widely used international accounting tool for government and business leaders to understand, quantify, and manage greenhouse gas emissions. This corporate accounting and reporting standard is endorsed by the Australian Government of Clean Energy Regulator.

The GHG Protocol defines three scopes for developing inventories leading to reporting of emissions. These scopes help to delineate direct and indirect emission sources, improve transparency, and provide a degree of flexibility for individual organisations to report based on their organisational structure, business activities and business goals.

Three scopes of emissions are defined in the GHG Protocol:

- 'Scope 1' emissions: direct GHG emissions occurring from sources owned or controlled by the company – for example vehicle fleet and direct fuel combustion. Any negative emissions (sequestration), for example from a plantation owned by the entity, would also be included in Scope 1.
- 'Scope 2' emissions: indirect GHG emissions from purchasing electricity or heat from other parties; and
- 'Scope 3' emissions: indirect emissions which occur due to the company's business activities, but from sources not owned or controlled by the company - for example emissions from employee business-related air travel.

Based on annual returns provided to the Federal Clean Energy Regulator under the National Greenhouse and Energy Reporting (NGER) scheme, annual emissions of GHG (Scope 1 and 2) are estimated to be less than 50 ktCO<sub>2</sub>-e. The MOD6 operational scenario isnot anticipated to have a material impact upon current GHG emissions compared to the status quo.

#### 8. CONCLUSIONS

This report has assessed particulate matter and lead impacts associated with the proposed modification 6 (MOD6) activities at Rasp Mine. Local land use, terrain, air quality and meteorology have been considered in the assessment and dispersion modelling was completed using the AERMOD modelling system.

A comprehensive analysis of the baseline air quality was updated as part of this assessment and now includes data up to June 2019.

This assessment considered three scenarios:

- Business as Usual (BAU) this scenario presents a representative operational year of operations under the existing situation and consists of 100% of operations from the Kintore Pit portal.
- MOD6 Construction scenario this year represents the construction of the box cut and the new portal
- MOD6 Operational scenario this year represents a reasonable worst-case future year of operations, with progressive rehabilitation and 100% of operations from the new mine portal.

The construction of the new box cut covered in the MOD6 construction scenario is only expected to take six months. The MOD6 operational scenario was chosen as representative worst-case future operational scenario as it comprised the period with the longest travel distances related to the transport and emplacement of waste rock material.

Emissions to air were estimated both in terms of annual as well as a 24-hour average reasonable worst-case scenario.

These emissions were then evaluated in terms of their predicted off-site impacts using the AERMOD atmospheric dispersion model.

For the MOD6 construction scenario, there is anticipated to be a net increase in lead concentrations / deposition rates across the sensitive receptors when compared with MOD4 (current Project Approval for construction activities).

All air quality metrics are predicted to be below their respective NSW EPA criteria for the MOD6 construction scenario. The MOD6 construction scenario is expected to be approximately six months in duration and modelling predictions indicate that the associated impacts will reduce upon completion of this phase.

For the MOD6 operational scenario, which incorporates the new portal location and the proposed tailings harvesting activities, there is predicted to be a net reduction in lead concentrations / deposition rates when compared with the PPR scenario and the BAU scenario.

All air quality metrics are predicted to be below their respective NSW EPA criteria for the MOD6 operational scenario.

As the MOD6 operational scenario is considered to be a reasonable worst-case future year scenario, it can be concluded that all future operational years are anticipated to result in a net reduction in offsite air quality impacts (including lead) when compared with current operations. This is primarily due to the shorter travelling distance for ore transport from the new portal to the ROM pad with an anticipated reduction in travelling for all vehicles of approximately 10,800 kms

The results for all three scenarios demonstrated compliance with all the NSW EPA impact assessment criteria for all air quality parameters assessed.

Cumulative impacts from the proposed Broken Hill North Mine Recommencement Project have been assessed for the short term and long term air quality metrics. The results demonstrate no exceedance of the NSW impact assessment criteria at any of the co-located receptors assessed.

## 9. **REFERENCES**

BHOP (2010). Rasp Mine Zinc-Lead-Silver Environment Assessment Report. July 2010. https://majorprojects.affinitylive.com/public/c0188a2ed0f0f5facd6fc5c78b8987e5/Chapter%208%20-%20Air%20Quality%20and%20Greenhouse%20Gases A4.pdf

Environ (2010a). Air quality assessment in support of the Development Application for the Rasp Underground Mine Project (ENVIRON report reference 1150\_BHOP Rasp Air\_Final\_19Mar10, dated 19 March 2010.

https://majorprojects.affinitylive.com/public/dc043d695919acd91b4125ace23b2680/Annexure%20H% 20-%20Air%20Quality%20Assessment.pdf

Environ (2010b) Rasp Mine, Broken Hill: Air Quality Assessment Addendum - Proposed Relocation of the Processing Area, dated 21 September 2010.

https://majorprojects.affinitylive.com/public/6aa46fe37698fddb67833c6be828ff08/annexure-b.pdf

Katestone (2011). NSW Coal Mining – Benchmarking Study: International Best Practise Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining. Prepared for the Office of Environment and Heritage (now DPIE) by Katestone Environmental Pty Ltd.

NEPC (1998a), "Ambient Air – National Environment Protection Measures for Ambient Air Quality" National Environment Protection Council, Canberra

NEPC (1998b), 'National Environmental Protection Measure and Impact Statement for Ambient Air Quality". National Environment Protection Council Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.

NEPC (2016). Ambient Air – National Environment Protection Measures (Ambient Air Quality) Measure as amended. 25 February 2016. National Environment Protection Council.

NSW EPA (2017). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales, January 2017.

Pacific Environment (2011). Re: Air Quality Assessment for Rasp Mine Revised Ventilation Stack location Letter report to BHP. Job number 20515G. 4 October 2015.

Pacific Environment (2013). Re. Validation study of modelling predictions and monitoring results for the Rasp Mine, Broken Hill NSW. Letter report to BJP. Job number 20515G. 12 March 2013.

Pacific Environment (2015a). Health Risk Assessment Rasp Mine Broken Hill. Job number 8844. 25 September 2015.

Pacific Environment (2015b). Re: Health Risk Assessment for the Rasp Mine at Broken Hill. Letter report to BHP. Job number 20515G. 25 September 2015.

Pacific Environment (2016). Re: Rasp Mine Wind Erosion Field Analyses. Letter Report dated December 2016.

Pacific Environment (2017a) Re: Air Quality Assessment for the Rasp Mine Modification 4. 14 March 2017.

Pacific Environment (2017b) Broken Hill North Mine Recommencement Project Air Quality Assessment. February 2017.

SPCC (1986) "Particles size distributions in dust from open cut coal mines in the Hunter Valley", Report Number 10636-002-71, Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames and Moore, 41 McLaren Street, North Sydney, NSW, 2060.

US EPA (1995) Compilation of Air Pollutant Emission Factors, AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. APPENDIX A EMISSIONS INVENTORIES AND ASSUMPTIONS FOR THE BAU SCENARIO, MOD6 CONSTRUCTON SCENARIO AND MOD6 OPERATIONAL SCENARIO

|                                                                               |        | Annual Emi              | issions           |          |
|-------------------------------------------------------------------------------|--------|-------------------------|-------------------|----------|
| Activity                                                                      | TSP    | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | Pb (TSP) |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (unsealed roads)       | 12,580 | 3,151                   | 315               | 68       |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (sealed roads)         | 4,079  | 783                     | 189               | 22       |
| Ore - unloading ore at ROM pad                                                | 1,401  | 663                     | 100               | 42       |
| Ore - dozers/front end loaders at ROM pad                                     | 4,869  | 883                     | 511               | 146      |
| Ore - crushed ore storage bin transfer                                        | 1,401  | 663                     | 100               | 42       |
| Ore - crushing                                                                | 97     | 43                      | 43                | 3        |
| Ore - Hauling concentrate by trucks within<br>processing plant (unsealed)     | 3,050  | 764                     | 76                | 34       |
| Ore - Hauling concentrate by trucks to rail siding (sealed)                   | 3,187  | 612                     | 148               | 35       |
| CBP - truck movement - cement (unsealed roads)                                | 125    | 31                      | 3                 | 1        |
| CBP - truck movement - cement (sealed roads)                                  | 17     | 3                       | 1                 | 0        |
| CBP - truck movement – aggregate (unsealed roads)                             | 111    | 28                      | 3                 | 1        |
| CBP - truck movement - aggregate (sealed roads)                               | 61     | 12                      | 3                 | 0        |
| CBP - truck movement - sand (unsealed roads)                                  | 426    | 107                     | 11                | 2        |
| CBP - truck movement - sand (sealed roads)                                    | 236    | 45                      | 11                | 1        |
| CBP - truck movement - shotcrete (unsealed roads)                             | 632    | 158                     | 16                | 3        |
| CBP - truck movement - shotcrete (sealed roads)                               | 65     | 12                      | 3                 | 0        |
| CBP - Unloading cement at rail siding                                         | 13     | 6                       | 1                 | -        |
| CBP -Aggregate transfer                                                       | 33     | 16                      | 1                 | -        |
| CBP - Sand transfer                                                           | 16     | 8                       | 0                 | -        |
| CBP - Cement transfer                                                         | 3      | 1                       | 0                 | -        |
| CBP - Weigh hopper loading                                                    | 20     | 10                      | 1                 | -        |
| CBP - Truck loading                                                           | 379    | 101                     | 6                 | -        |
| CBP - Residual from de-dusted air loading cement<br>and fly-ash               | -      | 53                      | 3                 | -        |
| CBP - Wind erosion (aggregate stock piles)                                    | 131    | 13                      | 10                | 2        |
| CBP - Wind erosion (whole CBP)                                                | 77     | 8                       | 6                 | 1        |
| WR - hauling from Kintore Pit to Kintore Pit Waste<br>Tipple (unsealed roads) | 1,530  | 383                     | 38                | 8        |
| WR - unloading at Kintore Pit Waste Tipple                                    | 96     | 45                      | 7                 | 0        |
| WR - dozers/front end loaders at Kintore Pit Waste<br>Tipple                  | 1,217  | 221                     | 128               | 6        |
| WR - hauling from Kintore Pit UG to BHP Pit<br>(unsealed roads)               | 787    | 197                     | 20                | 4        |

## Table A.1: Annual emissions estimates for the BAU scenario (kg/y)

|                                                            | Annual Emissions |        |        |          |  |
|------------------------------------------------------------|------------------|--------|--------|----------|--|
| Activity                                                   | TSP              | PM 10  | PM 2.5 | Pb (TSP) |  |
| WR - hauling from Kintore Pit UG to BHP Pit (sealed roads) | 50               | 10     | 2      | 0        |  |
| WR - unloading at BHP Pit                                  | 21               | 10     | 2      | 0        |  |
| WR – dozers on overburden at BHP Pit                       | 1,217            | 221    | 128    | 6        |  |
| WR - loading at BHP Pit                                    | 17               | 8      | 1      | 0        |  |
| WR – hauling from BHP Pit to TSF2 (unsealed roads)         | 480              | 172    | 17     | 9        |  |
| WR - hauling from BHP Pit to TSF2 (sealed roads)           | 112              | 31     | 7      | 1        |  |
| WR – Deliveries and General Heavy Vehicle<br>Movements     | 17               | 8      | 1      | 0        |  |
| WR – Material Handling (General)                           | 406              | 74     | 43     | 2        |  |
| WE - ROM Pad stockpile                                     | 74               | 37     | 6      | 2        |  |
| WE - Free areas                                            | 705              | 353    | 53     | 10       |  |
| WE - Disturbed areas                                       | 5,763            | 2,882  | 432    | 108      |  |
| TOTAL                                                      | 45,503           | 12,825 | 2,446  | 562      |  |

## Table A.2: Assumptions used in the emissions estimation for the BAU scenario

| Activity                                                                 | Assumptions                                                                                                                                  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Ore - hauling ore from Kintore Pit to ROM pad by truck<br>(sealed roads) | No controlson sealed roads                                                                                                                   |
| Ore - unloading ore at ROM pad                                           | No controlsapplied                                                                                                                           |
| Ore - dozers/front end loaders at ROM pad                                | Inputsbased on Environ 2010 report. Assume water sprays on feeder hopper.                                                                    |
| Ore - crushed ore storage bin transfer                                   | Average wind speed from Broken Hill (2016), Moisture content based on Environ (2010)                                                         |
| Ore - Hauling concentrate by trucks within processing plant (unsealed)   | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Ore - Hauling concentrate by trucks to rail siding (sealed)              | No control on sealed roads                                                                                                                   |
| CBP - Unloading cement at rail siding                                    | Assumes 3% moisture content                                                                                                                  |
| CBP -Aggregate transfer                                                  | Uncontrolled                                                                                                                                 |
| CBP - Sand transfer                                                      | Uncontrolled                                                                                                                                 |
| CBP - Cement transfer                                                    | Controlled through use of water spray                                                                                                        |
| CBP - Weigh hopper loading                                               | 70& control applied as it will be in a building (per Environ 2010)                                                                           |
| CBP - Truck loading                                                      | Controlled through use of water spray                                                                                                        |
| CBP - Wind erosion (aggregate stockpiles)                                | Assumes area of stockpiles to be 0.1 ha. Control applied for                                                                                 |

| Activity                                                                     | Assumptions                                                                                                                           |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | enclosure                                                                                                                             |
| CBP - Wind erosion (whole CBP)                                               | Chemical suppressant will be applied and achieve 95% dust control. Per Environ (2010)                                                 |
| WR - hauling from Kintore Pitto Kintore Pit Waste Tipple<br>(unsealed roads) | Haul road length provided by Gwen Wilson. Silt content based<br>on Environ (2010). 80% control with water and chemical<br>suppressant |
| WR - unloading at Kintore Pit Waste Tipple                                   | Average wind speed and moisture content based on Environ (2010)                                                                       |
| WR - hauling from Kintore PitUG to BHP Pit (unsealed roads)                  | Haul road length provided by Gwen Wilson. Silt content based<br>on Environ (2010). 80% control with water and chemical<br>suppressant |
| WR - hauling from Kintore PitUG to BHP Pit (sealed roads)                    | No control on sealed roads                                                                                                            |
| WR - unloading at BHP Pit                                                    | Average wind speed and moisture content based on Environ (2010)                                                                       |
| WR - loading at BHP Pit                                                      | Average wind speed and moisture content based on Environ (2010)                                                                       |
| WR – hauling from BHP Pit to TSF2 (unsealed roads)                           | Haul road length provided by Gwen Wilson. Silt content based<br>on Environ (2010). 80% control with water and chemical<br>suppressant |
| WR – hauling from BHP Pit to TSF2 (sealed roads)                             | No control on sealed roads                                                                                                            |
| WR – Deliveries and General Heavy Vehicle Movements                          | Average wind speed and moisture content based on Environ (2010)                                                                       |
| WR – Material Handling (General)                                             | Average wind speed and moisture content based on Environ (2010)                                                                       |
| WE - ROM Pad stockpile                                                       | CF based on CABC Results                                                                                                              |
| WE - Free areas                                                              | CF based on CABC Results                                                                                                              |
| WE - Disturbed areas                                                         | CF based on Environ (2010)                                                                                                            |

|                                                                               |       | Annual Emi | issions           |          |
|-------------------------------------------------------------------------------|-------|------------|-------------------|----------|
| Activity                                                                      | TSP   | PM 10      | PM <sub>2.5</sub> | Pb (TSP) |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (unsealed roads)       | 4,220 | 2,114      | 211               | 23       |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (sealed roads)         | 2,620 | 503        | 122               | 14       |
| Ore - unloading ore at ROM pad                                                | 973   | 460        | 70                | 29       |
| Ore - dozers/front end loaders at ROM pad                                     | 4,869 | 883        | 511               | 146      |
| Ore - crushed ore storage bin transfer                                        | 973   | 460        | 70                | 29       |
| Ore – crushing                                                                | 68    | 30         | 30                | 2        |
| Ore - Hauling concentrate by trucks within<br>processing plant (unsealed)     | 2,046 | 513        | 51                | 23       |
| Ore - Hauling concentrate by trucks to rail siding (sealed)                   | 2,047 | 393        | 95                | 23       |
| CBP - truck movement - cement (unsealed roads)                                | 125   | 31         | 3                 | 1        |
| CBP - truck movement - cement (sealed roads)                                  | 17    | 3          | 1                 | 0        |
| CBP - truck movement – aggregate (unsealed roads)                             | 111   | 28         | 3                 | 1        |
| CBP - truck movement - aggregate (sealed roads)                               | 61    | 12         | 3                 | 0        |
| CBP - truck movement - sand (unsealed roads)                                  | 426   | 107        | 11                | 2        |
| CBP - truck movement - sand (sealed roads)                                    | 236   | 45         | 11                | 1        |
| CBP - truck movement - shotcrete (unsealed roads)                             | 632   | 158        | 16                | 3        |
| CBP - truck movement - shotcrete (sealed roads)                               | 65    | 12         | 3                 | 0        |
| CBP - Loading cement at rail siding                                           | 13    | 6          | 1                 | -        |
| CBP -Aggregate transfer                                                       | 33    | 16         | 1                 | -        |
| CBP - Sand transfer                                                           | 16    | 8          | 0                 | -        |
| CBP - Cement transfer                                                         | 3     | 1          | 0                 | -        |
| CBP - Weigh hopper loading                                                    | 20    | 10         | 1                 | -        |
| CBP - Truck loading                                                           | 379   | 101        | 6                 | -        |
| CBP - Residual from de-dusted air loading cement<br>and fly-ash               | -     | 53         | 3                 | -        |
| CBP - Wind erosion (aggregate stock piles)                                    | 131   | 13         | 10                | 2        |
| CBP - Wind erosion (whole CBP)                                                | 77    | 8          | 6                 | 1        |
| WR - hauling from Kintore Pit to Kintore Pit Waste<br>Tipple (unsealed roads) | 602   | 301        | 30                | 3        |
| WR - unloading at Kintore Pit Waste Tipple from<br>Kintore Portal             | 52    | 49         | 7                 | 0        |
| WR - unloading at Kintore Pit Waste Tipple from<br>New Portal                 | 0     | 0          | 0                 | -        |

Table A.3: Annual emissions estimates for the MOD6 construction scenario (kg/y)

|                                                                                          |       | Annual Emi              | issions           |          |
|------------------------------------------------------------------------------------------|-------|-------------------------|-------------------|----------|
| Activity                                                                                 | TSP   | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> | Pb (TSP) |
| WR - dozers/front end loaders at Kintore Pit Waste<br>Tipple                             | 609   | 221                     | 128               | 3        |
| WR - hauling from Kintore Pit UG to BHP Pit<br>(unsealed roads)                          | 1,001 | 251                     | 25                | 5        |
| WR - hauling from Kintore Pit UG to BHP Pit (sealed roads)                               | 58    | 11                      | 3                 | 0        |
| WR - unloading at BHP Pit from Kintore Portal                                            | 37    | 18                      | 3                 | 0        |
| WR - unloading at BHP Pit from New Portal                                                | 0     | 0                       | 0                 | -        |
| WR - front end loaders at BHP Pit                                                        | 609   | 221                     | 128               | 3        |
| WE - ROM Pad stockpile                                                                   | 74    | 37                      | 6                 | 2        |
| WE - Free areas                                                                          | 705   | 353                     | 53                | 10       |
| WE - Disturbed areas                                                                     | 5,763 | 2,882                   | 432               | 108      |
| WR - blasting in boxcut area 1                                                           | 104   | 54                      | 3                 | 1        |
| WR - blasting in boxcut area 2                                                           | 43    | 22                      | 1                 | 0        |
| WR - blasting in boxcut area 3                                                           | 26    | 13                      | 1                 | 0        |
| WR - blasting in boxcut area 4                                                           | 0     | 0                       | 0                 | 0        |
| WR - loading waste rock from boxcut into trucks                                          | 339   | 160                     | 24                | 2        |
| WR - hauling waste rock from boxcut to BHP Pit<br>(unsealed)                             | 101   | 25                      | 3                 | 2        |
| WR - hauling waste rock from boxcut to BHP Pit<br>(sealed)                               | 49    | 9                       | 2                 | 1        |
| WR - unloading at BHP Pit                                                                | 8     | 8                       | 1                 | 0        |
| WR - dozers/frontend loaders on overburden at BHP                                        | 811   | 147                     | 85                | 4        |
| WR - hauling waste rock from boxcut to Little Kintore<br>Pit (unsealed)                  | 8,173 | 2,047                   | 205               | 44       |
| WR - hauling waste rock from boxcut to Little Kintore<br>Pit (sealed)                    | 1,709 | 328                     | 79                | 9        |
| WR - unloading at Little Kintore Pit                                                     | 323   | 153                     | 23                | 2        |
| WR - front end loaders at Little Kintore Pit                                             | 1,217 | 221                     | 128               | 6        |
| Laydow n area material - loading w aste rock from boxcut into trucks                     | 1     | 1                       | 0                 | 0        |
| Laydow n area material - hauling w aste rock from<br>laydow n area to BHP Pit (unsealed) | 9     | 2                       | 0                 | 0        |
| Laydow n area material - hauling w aste rock from laydow n area to BHP Pit (sealed)      | 4     | 1                       | 0                 | 0        |
| Laydow n area material - unloading w aste rock at<br>BHP Pit                             | 1     | 1                       | 0                 | 0        |
| Laydow n area material - front end loaders at BHP<br>Pit                                 | 203   | 37                      | 21                | 1        |

|                                                                                 | Annual Emissions |                  |                   |          |
|---------------------------------------------------------------------------------|------------------|------------------|-------------------|----------|
| Activity                                                                        | TSP              | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb (TSP) |
| Prog Rehab - loading wasterock from BHP pit into trucks                         | 19               | 9                | 1                 | 0        |
| Prog Rehab - hauling waste rock from BHP Pit to<br>Little Kintore Pit (sealed)  | 118              | 23               | 5                 | 2        |
| Prog Rehab - hauling wasterock from BHP Pit to<br>Little Kintore Pit (unsealed) | 197              | 49               | 5                 | 4        |
| Prog Rehab - unloading wasterock at Little Kintore<br>Pit                       | 19               | 9                | 1                 | 0        |
| Prog Rehab - front end loaders at Little Kintore Pit                            | 203              | 37               | 21                | 1        |
| WE - Boxcut Activities                                                          | 675              | 338              | 51                | 3        |
| TOTAL                                                                           | 44,027           | 14,006           | 2,714             | 519      |

## Table A.4: Assumptions used in the emissions estimation for the MOD6 construction scenario

| Activity                                                                   | Assumption                                                                                                                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Ore - hauling ore from Kintore Pit to ROM pad by truck<br>(unsealed roads) | Haul roadsto lengthsto be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Ore - hauling ore from Kintore Pit to ROM pad by truck<br>(sealed roads)   | No control on sealed roads                                                                                                                 |
| Ore - unloading ore at ROM pad                                             | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                    |
| Ore - dozers/front end loaders at ROM pad                                  | Inputsbased on Environ 2010 report                                                                                                         |
| Ore - crushed ore storage bin transfer                                     | Average wind speed from Broken Hill (2016), Moisture content based on Environ (2010)                                                       |
| Ore - Hauling concentrate by trucks within processing plant<br>(unsealed)  | Haul roadsto lengthsto be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Ore - Hauling concentrate by trucks to rail siding (sealed)                | Haul roadsto lengthsto be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| CBP - truck movement - cement (unsealed roads)                             | 90% control per Environ (2010)                                                                                                             |
| CBP - truck movement - cement (sealed roads)                               | No control on sealed roads                                                                                                                 |
| CBP - truck movement – aggregate (unsealed roads)                          | 90% control per Environ (2010)                                                                                                             |
| CBP - truck movement – aggregate (sealed roads)                            | No control on sealed roads                                                                                                                 |
| CBP - truck movement - sand (unsealed roads)                               | 90% control per Environ (2010)                                                                                                             |
| CBP - truck movement - sand (sealed roads)                                 | No control on sealed roads                                                                                                                 |
| CBP - truck movement - shotcrete (unsealed roads)                          | 90% control per Environ (2010)                                                                                                             |
| CBP - truck movement - shotcrete (sealed roads)                            | No control on sealed roads                                                                                                                 |

| Activity                                                                     | Assumption                                                                                                                                   |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| CBP - Loading cement at rail siding                                          | Assumes 3% moisture content                                                                                                                  |  |
| CBP -Aggregate transfer                                                      | Uncontrolled                                                                                                                                 |  |
| CBP - Sand transfer                                                          | Uncontrolled                                                                                                                                 |  |
| CBP - Cement transfer                                                        | Controlled through use of water spray                                                                                                        |  |
| CBP - Weigh hopper loading                                                   | 70% control applied asit will be in a building (per Environ 2010)                                                                            |  |
| CBP - Truck loading                                                          | Controlled through use of water spray                                                                                                        |  |
| CBP - Wind erosion (aggregate stockpiles)                                    | Assumes area of stockpiles to be 0.1 ha. Control applied for enclosure                                                                       |  |
| CBP - Wind erosion (whole CBP)                                               | Chemical suppressant will be applied and achieve 95% dust control. Per Environ (2010)                                                        |  |
| WR - hauling from Kintore Pitto Kintore Pit Waste Tipple<br>(unsealed roads) | Haul roads to lengths to be estimated from maps. Silt conten<br>based on Environ (2010). 80% control with water and chemic<br>suppressant    |  |
| WR - unloading at Kintore Pit Waste Tipple from Kintore<br>Portal            | Average wind speed and moisture content based on Enviror (2010)                                                                              |  |
| WR - unloading at Kintore Pit Waste Tipple from New<br>Portal                | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - dozers/front end loaders at Kintore Pit Waste Tipple                    | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemin<br>suppressant   |  |
| WR - hauling from Kintore PitUG to BHP Pit (unsealed roads)                  | Average wind speed and moisture content based on Environ (2010)                                                                              |  |
| WR - hauling from Kintore PitUG to BHP Pit (sealed<br>roads)                 | Inputsbased on Environ 2010 report                                                                                                           |  |
| WR - unloading at BHP Pit from Kintore Portal                                | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - unloading at BHP Pit from New Portal                                    | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - front end loaders at BHP Pit                                            | Inputsbased on Environ 2010 report                                                                                                           |  |
| WE - ROM Pad stockpile                                                       | CF based on Environ (2010)                                                                                                                   |  |
| WE - Free areas                                                              | CF based on CABC Results (natural crusting or dust suppressants)                                                                             |  |
| WE - Disturbed areas                                                         | CF based on CABC Results                                                                                                                     |  |
| WR - loading waste rock from boxcut into trucks                              | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |  |
| WR - hauling waste rockfrom boxcut to BHP Pit<br>(unsealed)                  | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - hauling waste rock from boxcut to BHP Pit (sealed)                      | Haul roadsto lengths to be estimated from maps. Silt content                                                                                 |  |

| Activity                                                                              | Assumption                                                                                                                                   |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | based on Environ (2010). 80% control with water and chemical suppressant                                                                     |
| WR - unloading at BHP Pit                                                             | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| WR - dozers/front end loaders on overburden at BHP                                    |                                                                                                                                              |
| WR - hauling waste rockfrom boxcut to Little Kintore Pit<br>(unsealed)                | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| WR - hauling waste rock from boxcut to Little Kintore Pit<br>(sealed)                 | No control on sealed roads                                                                                                                   |
| WR - unloading at Little Kintore Pit                                                  | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| WR - front end loaders at Little Kintore Pit                                          | Inputsbased on Environ 2010 report                                                                                                           |
| Laydown area material - Ioading waste rock from boxcut<br>into trucks                 | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| Laydown area material - hauling waste rock from laydown<br>area to BHP Pit (unsealed) | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| Laydown area material - hauling waste rock from laydown<br>area to BHP Pit (sealed)   | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Laydown area material - unloading waste rock at BHP Pit                               | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Laydown area material - front end loadersat BHP Pit                                   | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| Prog Rehab - loading waste rockfrom BHP pit into trucks                               | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| Prog Rehab - hauling waste rockfrom BHP Pit to Little<br>Kintore Pit (sealed)         | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Prog Rehab - hauling waste rockfrom BHP Pit to Little<br>Kintore Pit (unsealed)       | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |
| Prog Rehab - unloading waste rockat Little Kintore Pit                                | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).                      |
| Prog Rehab - front end loadersat Little Kintore Pit                                   | Inputsbased on Environ 2010 report                                                                                                           |
| WE - Boxcut Activities                                                                | Control based on Environ 2010 report which states '65% control<br>efficiency due to combined use of waster sprays and wind<br>breaks'        |

| Activity                                                                  | Annual Emissions |                  |                   |          |
|---------------------------------------------------------------------------|------------------|------------------|-------------------|----------|
|                                                                           | TSP              | PM <sub>10</sub> | PM <sub>2.5</sub> | Pb (TSP) |
| Ore - hauling ore from boxcut to ROM pad by truck (sealed roads)          | 754              | 145              | 35                | 4        |
| Ore - unloading ore at ROM pad                                            | 973              | 460              | 70                | 29       |
| Ore - front end loaders at ROM pad                                        | 4,869            | 883              | 511               | 146      |
| Ore - crushed ore storage bin transfer                                    | 973              | 460              | 70                | 29       |
| Ore - crushing                                                            | 68               | 30               | 30                | 2        |
| Ore - Hauling concentrate by trucks within<br>processing plant (unsealed) | 2,118            | 530              | 53                | 24       |
| Ore - Hauling concentrate by trucks to rail siding (sealed)               | 2,213            | 425              | 103               | 25       |
| CBP - truck movement - cement (unsealed roads)                            | 125              | 31               | 3                 | 1        |
| CBP - truck movement - cement (sealed roads)                              | 17               | 3                | 1                 | 0        |
| CBP - truck movement - aggregate (unsealed roads)                         | 111              | 28               | 3                 | 1        |
| CBP - truck movement - aggregate (sealed roads)                           | 61               | 12               | 3                 | 0        |
| CBP - truck movement - sand (unsealed roads)                              | 426              | 107              | 11                | 2        |
| CBP - truck movement - sand (sealed roads)                                | 236              | 45               | 11                | 1        |
| CBP - truck movement - shotcrete (unsealed roads)                         | 632              | 158              | 16                | 3        |
| CBP - truck movement - shotcrete (sealed roads)                           | 65               | 12               | 3                 | 0        |
| CBP - Loading cement at rail siding                                       | 13               | 6                | 1                 | -        |
| CBP -Aggregate transfer                                                   | 33               | 16               | 1                 | -        |
| CBP - Sand transfer                                                       | 16               | 8                | 0                 | -        |
| CBP - Cement transfer                                                     | 3                | 1                | 0                 | -        |
| CBP - Weigh hopper loading                                                | 20               | 10               | 1                 | -        |
| CBP - Truck loading                                                       | 379              | 101              | 6                 | -        |
| CBP - Residual from de-dusted air loading cement<br>and fly-ash           | -                | 53               | 3                 | -        |
| CBP - Wind erosion (aggregate stock piles)                                | 131              | 13               | 10                | 2        |
| CBP - Wind erosion (w hole CBP)                                           | 77               | 8                | 6                 | 1        |
| WR - hauling from New Portal to Kintore Pit<br>(unsealed)                 | 1,769            | 443              | 44                | 9.6      |
| WR - hauling from New Portal to Kintore Pit (sealed)                      | 235              | 45               | 11                | 1.3      |
| WR - unloading at Kintore Pit                                             | 49               | 46               | 7                 | 0.2      |
| WR - dozers/front end loaders on overburden at<br>Kintore Pit             | 1,217            | 221              | 128               | 6.1      |
| WR - hauling from New Portal to BHP Pit (unsealed)                        | 290              | 73               | 7                 | 5.5      |
| WR - hauling from New Portal to BHP Pit (sealed)                          | 231              | 44               | 11                | 4.3      |
| WR - unloading at BHP Pit                                                 | 88               | 41               | 6                 | 0.4      |

## Table A.5: Annual emissions estimates for MOD6 operational scenario (kg/y)

| Activity                                                    | Annual Emissions |        |        |          |
|-------------------------------------------------------------|------------------|--------|--------|----------|
|                                                             | TSP              | PM 10  | PM 2.5 | Pb (TSP) |
| WR - dozers/front end loaders at BHP Pit                    | 1,217            | 221    | 128    | 6.1      |
| WR - unloading at Mt Hebbard                                | 1,963            | 492    | 49     | 10.6     |
| WR - dozers on overburden at Mt Hebbard                     | 186              | 36     | 9      | 1.0      |
| WE - ROM Pad stockpile                                      | 74               | 37     | 6      | 2.2      |
| WE - Free areas                                             | 705              | 353    | 53     | 9.9      |
| WE - Disturbed areas                                        | 5,763            | 2,882  | 432    | 108.3    |
| Opt A - Grader/Excavator shaving top layer of TSF2          | 112              | 53     | 8      | 0.3      |
| Opt A - 2 dozers pushing shaved tailings into stockpile     | 216              | 35     | 23     | 0.7      |
| Opt A - WE from TSF area                                    | 214              | 107    | 16     | 0.7      |
| Opt A - WE from tailings stockpile                          | 68               | 34     | 5      | 0.2      |
| Opt A - Excavator loading tailings stockpile to truck       | 112              | 53     | 8      | 0.3      |
| Opt A - hauling within TSF2 to sealed road<br>(unsealed)    | 2,710            | 679    | 68     | 8.4      |
| Opt A - hauling outside TSF2 to sealed road<br>(unsealed)   | 4,321            | 1,082  | 108    | 23.3     |
| Opt A - hauling on sealed portion of road toward<br>Kintore | 2,747            | 527    | 128    | 14.8     |
| Opt A - hauling at Kintore pit (unsealed)                   | 10,738           | 2,689  | 269    | 58.0     |
| Opt A - Unloading at Kintore Pit                            | 112              | 53     | 8      | 0.3      |
| TOTAL                                                       | 48,269           | 13,487 | 2,476  | 529.7    |

## Table A.6: Assumptions used in the emissions estimation for the MOD6 operational scenario

| Activity                                                                  | Assumptions                                                                                                                          |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Ore - hauling ore from boxcut to ROM pad by truck (sealed roads)          | No control on sealed roads                                                                                                           |
| Ore - unloading ore at ROM pad                                            | Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).              |
| Ore - front end loadersat ROM pad                                         | Inputsbased on Environ 2010 report. Assume water sprays on feeder hopper.                                                            |
| Ore - crushed ore storage bin transfer                                    | Average wind speed from Broken Hill (2016), Moisture content based on Environ (2010)                                                 |
| Ore - Hauling concentrate by trucks within processing plant<br>(unsealed) | Haul roadsto lengthsto be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant |
| Ore - Hauling concentrate by trucks to rail siding (sealed)               | Haul roadsto lengthsto be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical             |

| Activity                                               | Assumptions                                                                                                                                  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                        | suppressant                                                                                                                                  |  |
| CBP - truck movement - cement (unsealed roads)         | 90% control per Environ (2010)                                                                                                               |  |
| CBP - truck movement - cement (sealed roads)           | No control on sealed roads                                                                                                                   |  |
| CBP - truck movement - aggregate (unsealed roads)      | 90% control per Environ (2010)                                                                                                               |  |
| CBP - truck movement - aggregate (sealed roads)        | No control on sealed roads                                                                                                                   |  |
| CBP - truck movement - sand (unsealed roads)           | 90% control per Environ (2010)                                                                                                               |  |
| CBP - truck movement - sand (sealed roads)             | No control on sealed roads                                                                                                                   |  |
| CBP - truck movement - shotcrete (unsealed roads)      | 90% control per Environ (2010)                                                                                                               |  |
| CBP - truck movement - shotcrete (sealed roads)        | No control on sealed roads                                                                                                                   |  |
| CBP - Loading cement at rail siding                    | Assumes 3% moisture content                                                                                                                  |  |
| CBP -Aggregate transfer                                | Uncontrolled                                                                                                                                 |  |
| CBP - Sand transfer                                    | Uncontrolled                                                                                                                                 |  |
| CBP - Cement transfer                                  | Controlled through use of water spray                                                                                                        |  |
| CBP - Weigh hopper loading                             | 70% control applied asit will be in a building (per Environ 2010)                                                                            |  |
| CBP - Truck loading                                    | Controlled through use of water spray                                                                                                        |  |
| CBP - Wind erosion (aggregate stockpiles)              | Assumes area of stockpiles to be 0.1 ha. Control applied for enclosure                                                                       |  |
| CBP - Wind erosion (whole CBP)                         | Chemical suppressant will be applied and achieve 95% dust control. Per Environ (2010)                                                        |  |
| WR - hauling from New Portal to Kintore Pit (unsealed) | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - hauling from New Portal to Kintore Pit (sealed)   | No control on sealed roads                                                                                                                   |  |
| WR - unloading at Kintore Pit                          | Average wind speed and moisture content based on Environ (2010)                                                                              |  |
| WR - hauling from New Portal to BHP Pit (unsealed)     | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - hauling from New Portal to BHP Pit (sealed)       | No control on sealed roads                                                                                                                   |  |
| WR - unloading at BHP Pit                              | Average wind speed and moisture content based on Environ (2010)                                                                              |  |
| WR - dozers/front end loaders at BHP Pit               | Inputsbased on Environ 2010 report                                                                                                           |  |
| WR - unloading at Mt Hebbard                           | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WR - dozerson overburden at Mt Hebbard                 | Haul roads to lengths to be estimated from maps. Silt content<br>based on Environ (2010). 80% control with water and chemical<br>suppressant |  |
| WE - ROM Pad stockpile                                 | CF based on Environ (2010)                                                                                                                   |  |

| Activity             | Assumptions              |
|----------------------|--------------------------|
| WE - Free areas      | CF based on CABC Results |
| WE - Disturbed areas | CF based on CABC Results |

| Activity                                                                      | Maximum 24-hour Emissions |                   |  |
|-------------------------------------------------------------------------------|---------------------------|-------------------|--|
|                                                                               | <b>PM</b> <sub>10</sub>   | PM <sub>2.5</sub> |  |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (unsealed roads)       | 2,114.1                   | 211.4             |  |
| Ore - hauling ore from Kintore Pit to ROM pad by truck (sealed roads)         | 503.0                     | 121.7             |  |
| Ore - unloading ore at ROM pad                                                | 460.3                     | 69.7              |  |
| Ore - dozers/front end loaders at ROM pad                                     | 883.2                     | 511.2             |  |
| Ore - crushed ore storage bin transfer                                        | 460.3                     | 69.7              |  |
| Ore - crushing                                                                | 30.0                      | 30.0              |  |
| Ore - Hauling concentrate by trucks within<br>processing plant (unsealed)     | 512.5                     | 51.3              |  |
| Ore - Hauling concentrate by trucks to rail siding (sealed)                   | 392.9                     | 95.1              |  |
| CBP - truck movement - cement (unsealed roads)                                | 31.3                      | 3.1               |  |
| CBP - truck movement - cement (sealed roads)                                  | 3.2                       | 0.8               |  |
| CBP - truck movement - aggregate (unsealed roads)                             | 27.8                      | 2.8               |  |
| CBP - truck movement - aggregate (sealed roads)                               | 11.8                      | 2.9               |  |
| CBP - truck movement - sand (unsealed roads)                                  | 106.8                     | 10.7              |  |
| CBP - truck movement - sand (sealed roads)                                    | 45.3                      | 11.0              |  |
| CBP - truck movement - shotcrete (unsealed roads)                             | 158.3                     | 15.8              |  |
| CBP - truck movement - shotcrete (sealed roads)                               | 12.4                      | 3.0               |  |
| CBP - Loading cement at rail siding                                           | 6.1                       | 0.9               |  |
| CBP - Aggregate transfer                                                      | 15.9                      | 0.9               |  |
| CBP - Sand transfer                                                           | 7.6                       | 0.4               |  |
| CBP - Cement transfer                                                         | 1.1                       | 0.2               |  |
| CBP - Weigh hopper loading                                                    | 10.0                      | 0.6               |  |
| CBP - Truck loading                                                           | 101.2                     | 5.7               |  |
| CBP - Residual from de-dusted air loading cement<br>and fly-ash               | 52.5                      | 2.9               |  |
| CBP - Wind erosion (aggregate stock piles)                                    | 13.1                      | 9.9               |  |
| CBP - Wind erosion (w hole CBP)                                               | 7.7                       | 5.7               |  |
| WR - hauling from Kintore Pit to Kintore Pit Waste<br>Tipple (unsealed roads) | 301.4                     | 30.1              |  |
| WR - unloading at Kintore Pit Waste Tipple from<br>Kintore Portal             | 49.5                      | 7.5               |  |
| WR - dozers/frontend loaders at Kintore Pit Waste<br>Tipple                   | 220.8                     | 127.8             |  |
| WR - hauling from Kintore Pit UG to BHP Pit<br>(unsealed roads)               | 250.8                     | 25.1              |  |

| Table A.7: Maximum 24-hour emissions estimates for the MOD6 construction scenario (kg/y) |
|------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------|

|                                                                                          | Maximum 24-hour Emissions |                   |  |
|------------------------------------------------------------------------------------------|---------------------------|-------------------|--|
| Activity                                                                                 | PM 10                     | PM <sub>2.5</sub> |  |
| WR - hauling from Kintore Pit UG to BHP Pit (sealed roads)                               | 11.1                      | 2.7               |  |
| WR - unloading at BHP Pit from Kintore Portal                                            | 17.7                      | 2.7               |  |
| WR - front end loaders at BHP Pit                                                        | 220.8                     | 127.8             |  |
| WE - ROM Pad stockpile                                                                   | 37.2                      | 5.6               |  |
| WE - Free areas                                                                          | 352.6                     | 52.9              |  |
| WE - Disturbed areas                                                                     | 2,881.5                   | 432.2             |  |
| WR - blasting in boxcut area 1                                                           | 54.3                      | 3.1               |  |
| WR - blasting in boxcut area 2                                                           | 22.2                      | 1.3               |  |
| WR - blasting in boxcut area 3                                                           | 13.4                      | 0.8               |  |
| WR - blasting in boxcut area 4                                                           | 0.0                       | 0.0               |  |
| WR - loading waste rock from boxcut into trucks                                          | 633.1                     | 216.2             |  |
| WR - dozers/front end loaders on overburden at BHP                                       | 220.8                     | 127.8             |  |
| WR - hauling waste rock from boxcut to Little<br>Kintore Pit (unsealed)                  | 8,481.8                   | 1,912.3           |  |
| WR - hauling wasterock from boxcut to Little<br>Kintore Pit (sealed)                     | 1,359.0                   | 741.3             |  |
| WR - unloading at Little Kintore Pit                                                     | 633.1                     | 216.2             |  |
| WR - front end loaders at Little Kintore Pit                                             | 220.8                     | 127.8             |  |
| Laydow n area material - loading w aste rock from<br>boxcut into trucks                  | 0.7                       | 0.1               |  |
| Laydow n area material - hauling w aste rock from<br>laydow n area to BHP Pit (unsealed) | 2.3                       | 0.2               |  |
| Laydow n area material - hauling w aste rock from<br>laydow n area to BHP Pit (sealed)   | 0.8                       | 0.2               |  |
| Laydow n area material - unloading w aste rock at<br>BHP Pit                             | 0.7                       | 0.1               |  |
| Laydow n area material - front end loaders at BHP<br>Pit                                 | 36.8                      | 21.3              |  |
| Prog Rehab - loading waste rock from BHP pit into trucks                                 | 9.2                       | 1.4               |  |
| Prog Rehab - hauling waste rock from BHP Pit to<br>Little Kintore Pit (sealed)           | 22.6                      | 5.5               |  |
| Prog Rehab - hauling wasterock from BHP Pit to<br>Little Kintore Pit (unsealed)          | 49.3                      | 4.9               |  |
| Prog Rehab - unloading waste rock at Little Kintore<br>Pit                               | 9.2                       | 1.4               |  |
| Prog Rehab - front end loaders at Little Kintore Pit                                     | 36.8                      | 21.3              |  |
| WE - Boxcut Activities                                                                   | 337.7                     | 50.6              |  |

| Activity | Maximum 24-hour Emissions |                   |
|----------|---------------------------|-------------------|
|          | PM 10                     | PM <sub>2.5</sub> |
| TOTAL    | 22,457                    | 5,505.5           |

| Activity                                                                  | Maximum 24-hour emissions |                   |  |
|---------------------------------------------------------------------------|---------------------------|-------------------|--|
|                                                                           | <b>PM</b> <sub>10</sub>   | PM <sub>2.5</sub> |  |
| Ore - hauling ore from boxcut to ROM pad by truck (sealed roads)          | 144.7                     | 35.0              |  |
| Ore - unloading ore at ROM pad                                            | 460.3                     | 69.7              |  |
| Ore - front end loaders at ROM pad                                        | 883.2                     | 511.2             |  |
| Ore - crushed ore storage bin transfer                                    | 460.3                     | 69.7              |  |
| Ore - crushing                                                            | 30.0                      | 30.0              |  |
| Ore - Hauling concentrate by trucks within<br>processing plant (unsealed) | 530.4                     | 53.0              |  |
| Ore - Hauling concentrate by trucks to rail siding<br>(sealed)            | 424.8                     | 102.8             |  |
| CBP - truck movement - cement (unsealed roads)                            | 31.3                      | 3.1               |  |
| CBP - truck movement - cement (sealed roads)                              | 3.2                       | 0.8               |  |
| CBP - truck movement - aggregate (unsealed roads)                         | 27.8                      | 2.8               |  |
| CBP - truck movement - aggregate (sealed roads)                           | 11.8                      | 2.9               |  |
| CBP - truck movement - sand (unsealed roads)                              | 106.8                     | 10.7              |  |
| CBP - truck movement - sand (sealed roads)                                | 45.3                      | 11.0              |  |
| CBP - truck movement - shotcrete (unsealed roads)                         | 158.3                     | 15.8              |  |
| CBP - truck movement - shotcrete (sealed roads)                           | 12.4                      | 3.0               |  |
| CBP - Loading cement at rail siding                                       | 6.1                       | 0.9               |  |
| CBP - Aggregate transfer                                                  | 15.9                      | 0.9               |  |
| CBP - Sand transfer                                                       | 7.6                       | 0.4               |  |
| CBP - Cement transfer                                                     | 1.1                       | 0.2               |  |
| CBP - Weigh hopper loading                                                | 10.0                      | 0.6               |  |
| CBP - Truck loading                                                       | 101.2                     | 5.7               |  |
| CBP - Residual from de-dusted air loading cement<br>and fly-ash           | 52.5                      | 2.9               |  |
| CBP - Wind erosion (aggregate stock piles)                                | 13.1                      | 9.9               |  |
| CBP - Wind erosion (w hole CBP)                                           | 7.7                       | 5.7               |  |
| WR - hauling from New Portal to Kintore Pit<br>(unsealed)                 | 575.8                     | 57.6              |  |
| WR - hauling from New Portal to Kintore Pit (sealed)                      | 69.0                      | 16.7              |  |

## Table A.8: Maximum 24-hour emissions estimates for MOD6 operational scenario (kg/y)

|                                                              | Maximum 24-h     | ouremissions      |  |  |
|--------------------------------------------------------------|------------------|-------------------|--|--|
| Activity                                                     | PM <sub>10</sub> | PM <sub>2.5</sub> |  |  |
| WR - unloading at Kintore Pit                                | 67.2             | 10.2              |  |  |
| WR - dozers/frontend loaders on overburden at<br>Kintore Pit | 294.4            | 170.4             |  |  |
| WR - unloading at BHP Pit                                    | 8.3              | 1.3               |  |  |
| WR - hauling from Kintore Pit to South Road<br>(unsealed)    | 112.2            | 11.2              |  |  |
| WR - unloading at South Road                                 | 8.3              | 1.3               |  |  |
| WR - dozers on overburden at South Road                      | 220.8            | 127.8             |  |  |
| WE - ROM Pad stockpile                                       | 37.2             | 5.6               |  |  |
| WE - Free areas                                              | 352.6            | 52.9              |  |  |
| WE - Disturbed areas                                         | 2,881.5          | 432.2             |  |  |
| Opt A - Grader/Excavator shaving top layer of TSF2           | 69.3             | 10.5              |  |  |
| Opt A - 2 dozers pushing shaved tailings into stockpile      | 135.2            | 86.7              |  |  |
| Opt A - WE from TSF area                                     | 107.0            | 16.0              |  |  |
| Opt A - WE from tailings stockpile                           | 34.2             | 5.1               |  |  |
| Opt A - Excavator loading tailings stockpile to truck        | 69.3             | 10.5              |  |  |
| Opt A - hauling within TSF2 to sealed road<br>(unsealed)     | 884.8            | 88.5              |  |  |
| Opt A - hauling outside TSF2 to sealed road<br>(unsealed)    | 1,410.9          | 141.1             |  |  |
| Opt A - hauling on sealed portion of road tow ard<br>Kintore | 687.5            | 166.3             |  |  |
| Opt A - hauling at Kintore pit (unsealed)                    | 3,505.8          | 350.6             |  |  |
| Opt A - Unloading at Kintore Pit                             | 69.3             | 10.5              |  |  |
| TOTAL                                                        | 15,146.5         | 2,721.5           |  |  |

# APPENDIX B TABULATED RESULTS FOR BAU, PPR, MOD6 OPERATIONAL SCENARIO, MOD6 CONSTRUCTION SCENARIO AND MOD4

|                |        | E           | BAU                                          | MOD6 c      | perational                                   |                |        | E           | BAU                                          | MOD6        | operational                                 |
|----------------|--------|-------------|----------------------------------------------|-------------|----------------------------------------------|----------------|--------|-------------|----------------------------------------------|-------------|---------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulative<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 0.5                                          | n/a         | 0.5                                          | Criterion      | n/a    | n/a         | 0.5                                          | n/a         | 0.5                                         |
| R1             | 0.0100 | 0.0093      | 0.2324                                       | 0.0085      | 0.2317                                       | R36            | 0.0100 | 0.0089      | 0.2323                                       | 0.0080      | 0.2315                                      |
| R2             | 0.0120 | 0.0096      | 0.2308                                       | 0.0087      | 0.2299                                       | R37            | 0.0100 | 0.0081      | 0.2324                                       | 0.0073      | 0.2316                                      |
| R3             | 0.0260 | 0.0165      | 0.2305                                       | 0.0150      | 0.2291                                       | R38            | 0.0040 | 0.0034      | 0.2302                                       | 0.0030      | 0.2299                                      |
| R4             | 0.0200 | 0.0082      | 0.2293                                       | 0.0074      | 0.2285                                       | R39            | 0.0040 | 0.0035      | 0.2302                                       | 0.0031      | 0.2299                                      |
| R5             | 0.0180 | 0.0069      | 0.2295                                       | 0.0062      | 0.2287                                       | R40            | 0.0080 | 0.0064      | 0.2303                                       | 0.0057      | 0.2296                                      |
| R6             | 0.0140 | 0.0073      | 0.2291                                       | 0.0065      | 0.2283                                       | R41            | 0.0080 | 0.0078      | 0.2302                                       | 0.0070      | 0.2294                                      |
| R7             | 0.0040 | 0.0039      | 0.2303                                       | 0.0036      | 0.2300                                       | R42            | 0.0090 | 0.0092      | 0.2309                                       | 0.0083      | 0.2300                                      |
| R8             | 0.0090 | 0.0080      | 0.2304                                       | 0.0071      | 0.2295                                       | R43            | -      | 0.0110      | 0.2349                                       | 0.0100      | 0.2339                                      |
| R9             | 0.0080 | 0.0063      | 0.2304                                       | 0.0056      | 0.2297                                       | R44            | -      | 0.0018      | 0.2301                                       | 0.0016      | 0.2299                                      |
| R10            | 0.0060 | 0.0060      | 0.2304                                       | 0.0054      | 0.2299                                       | R45            | -      | 0.0040      | 0.2300                                       | 0.0036      | 0.2297                                      |
| R11            | 0.0070 | 0.0049      | 0.2299                                       | 0.0044      | 0.2294                                       | R46            | -      | 0.0023      | 0.2298                                       | 0.0020      | 0.2296                                      |
| R12            | 0.0050 | 0.0039      | 0.2302                                       | 0.0036      | 0.2299                                       | R47            | -      | 0.0050      | 0.2309                                       | 0.0045      | 0.2304                                      |
| R13            | 0.0050 | 0.0035      | 0.2302                                       | 0.0032      | 0.2299                                       | R48            | -      | 0.0022      | 0.2305                                       | 0.0020      | 0.2302                                      |
| R14            | 0.0040 | 0.0043      | 0.2305                                       | 0.0039      | 0.2302                                       | R49            | -      | 0.0010      | 0.2301                                       | 0.0009      | 0.2301                                      |
| R15            | 0.0020 | 0.0015      | 0.2302                                       | 0.0013      | 0.2301                                       | R50            | -      | 0.0065      | 0.2308                                       | 0.0059      | 0.2302                                      |
| R16            | 0.0020 | 0.0019      | 0.2304                                       | 0.0017      | 0.2302                                       | R51            | -      | 0.0040      | 0.2283                                       | 0.0036      | 0.2279                                      |
| R17            | 0.0040 | 0.0034      | 0.2305                                       | 0.0031      | 0.2302                                       | R52            | -      | 0.0043      | 0.2286                                       | 0.0039      | 0.2281                                      |
| R18            | 0.0030 | 0.0029      | 0.2300                                       | 0.0026      | 0.2297                                       | R53            | -      | 0.0027      | 0.2270                                       | 0.0025      | 0.2267                                      |

#### PPR, BAU and MOD6 operational scenarios – Predicted annual average lead (as TSP) concentrations

Table B.1: Predicted incremental and cumulative annual average lead (as TSP) concentrations (µg/m<sup>3</sup>) for PPR, BAU and MOD6 operational scenario

|                |        | E           | BAU                                          | MOD6 c      | operational                                  |                |     | E           | BAU                                          | MOD6        | operational                                  |
|----------------|--------|-------------|----------------------------------------------|-------------|----------------------------------------------|----------------|-----|-------------|----------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 0.5                                          | n/a         | 0.5                                          | Criterion      | n/a | n/a         | 0.5                                          | n/a         | 0.5                                          |
| R19            | 0.0020 | 0.0012      | 0.2302                                       | 0.0011      | 0.2301                                       | R54            | -   | 0.0028      | 0.2271                                       | 0.0026      | 0.2268                                       |
| R20            | 0.0020 | 0.0011      | 0.2301                                       | 0.0010      | 0.2300                                       | R55            | -   | 0.0013      | 0.2256                                       | 0.0012      | 0.2255                                       |
| R21            | 0.0130 | 0.0107      | 0.2337                                       | 0.0096      | 0.2326                                       | R56            | -   | 0.0013      | 0.2256                                       | 0.0012      | 0.2255                                       |
| R22            | 0.0140 | 0.0114      | 0.2344                                       | 0.0101      | 0.2332                                       | R57            | -   | 0.0026      | 0.2268                                       | 0.0024      | 0.2266                                       |
| R23            | 0.0170 | 0.0135      | 0.2360                                       | 0.0120      | 0.2345                                       | R58            | -   | 0.0010      | 0.2253                                       | 0.0009      | 0.2252                                       |
| R24            | 0.0240 | 0.0148      | 0.2366                                       | 0.0131      | 0.2350                                       | R59            | -   | 0.0005      | 0.2248                                       | 0.0005      | 0.2247                                       |
| R25            | 0.0090 | 0.0077      | 0.2329                                       | 0.0070      | 0.2321                                       | R60            | -   | 0.0029      | 0.2272                                       | 0.0027      | 0.2269                                       |
| R26            | 0.0330 | 0.0207      | 0.2403                                       | 0.0186      | 0.2381                                       | R61            | -   | 0.0013      | 0.2256                                       | 0.0012      | 0.2255                                       |
| R27            | 0.0360 | 0.0261      | 0.2430                                       | 0.0242      | 0.2412                                       | R62            | -   | 0.0026      | 0.2269                                       | 0.0023      | 0.2266                                       |
| R28            | 0.0260 | 0.0224      | 0.2418                                       | 0.0207      | 0.2402                                       | R63            | -   | 0.0017      | 0.2260                                       | 0.0016      | 0.2259                                       |
| R29            | 0.0220 | 0.0165      | 0.2373                                       | 0.0151      | 0.2360                                       | R64            | -   | 0.0022      | 0.2265                                       | 0.0020      | 0.2262                                       |
| R30            | 0.0170 | 0.0150      | 0.2375                                       | 0.0137      | 0.2362                                       | R65            | -   | 0.0058      | 0.2301                                       | 0.0052      | 0.2295                                       |
| R31            | 0.0100 | 0.0081      | 0.2330                                       | 0.0073      | 0.2322                                       | R66            | -   | 0.0040      | 0.2283                                       | 0.0036      | 0.2279                                       |
| R32            | 0.0090 | 0.0075      | 0.2329                                       | 0.0068      | 0.2322                                       | R67            | -   | 0.0040      | 0.2283                                       | 0.0037      | 0.2279                                       |
| R33            | 0.0100 | 0.0087      | 0.2347                                       | 0.0078      | 0.2338                                       | R68            | -   | 0.0032      | 0.2275                                       | 0.0029      | 0.2272                                       |
| R34            | 0.0090 | 0.0092      | 0.2316                                       | 0.0083      | 0.2307                                       | R69            | -   | 0.0026      | 0.2269                                       | 0.0024      | 0.2267                                       |
| R35            | 0.0090 | 0.0091      | 0.2320                                       | 0.0082      | 0.2311                                       | R70            | -   | 0.0025      | 0.2268                                       | 0.0023      | 0.2266                                       |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

## PPR, BAU and MOD6 operational scenarios – Predicted annual average lead deposition

Table B.2: Predicted incremental and cumulative annual average lead deposition (as total particulate) (g/m<sup>2</sup>/annum) for the PPR, BAU and MOD6 operational scenarios

|             |        | BAU         | MOD6 C      | perational                                  |             |        | BAU         | MOD6 O      | perational                                   |
|-------------|--------|-------------|-------------|---------------------------------------------|-------------|--------|-------------|-------------|----------------------------------------------|
| Receptor ID | PPR    | Incremental | Incremental | Cumulative<br>(Incremental +<br>background) | Receptor ID | PPR    | Incremental | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion   | n/a    | n/a         | n/a         | n/a                                         | Criterion   | n/a    | n/a         | n/a         | n/a                                          |
| R1          | 0.0400 | 0.0228      | 0.0223      | 0.0223                                      | R36         | 0.0400 | 0.0195      | 0.0181      | 0.0181                                       |
| R2          | 0.0500 | 0.0255      | 0.0249      | 0.0249                                      | R37         | 0.0500 | 0.0184      | 0.0170      | 0.0170                                       |
| R3          | 0.0900 | 0.0459      | 0.0451      | 0.0451                                      | R38         | 0.0100 | 0.0062      | 0.0057      | 0.0057                                       |
| R4          | 0.0600 | 0.0194      | 0.0185      | 0.0185                                      | R39         | 0.0100 | 0.0066      | 0.0060      | 0.0060                                       |
| R5          | 0.0400 | 0.0153      | 0.0143      | 0.0143                                      | R40         | 0.0300 | 0.0152      | 0.0142      | 0.0142                                       |
| R6          | 0.0400 | 0.0145      | 0.0132      | 0.0132                                      | R41         | 0.0300 | 0.0196      | 0.0185      | 0.0185                                       |
| R7          | 0.0100 | 0.0073      | 0.0068      | 0.0068                                      | R42         | 0.0400 | 0.0258      | 0.0245      | 0.0245                                       |
| R8          | 0.0300 | 0.0173      | 0.0160      | 0.0160                                      | R43         | -      | 0.0290      | 0.0272      | 0.0272                                       |
| R9          | 0.0200 | 0.0136      | 0.0126      | 0.0126                                      | R44         | -      | 0.0037      | 0.0035      | 0.0035                                       |
| R10         | 0.0200 | 0.0137      | 0.0129      | 0.0129                                      | R45         | -      | 0.0087      | 0.0082      | 0.0082                                       |
| R11         | 0.0200 | 0.0106      | 0.0099      | 0.0099                                      | R46         | -      | 0.0042      | 0.0039      | 0.0039                                       |
| R12         | 0.0200 | 0.0087      | 0.0082      | 0.0082                                      | R47         | -      | 0.0117      | 0.0109      | 0.0109                                       |
| R13         | 0.0100 | 0.0074      | 0.0070      | 0.0070                                      | R48         | -      | 0.0052      | 0.0048      | 0.0048                                       |
| R14         | 0.0100 | 0.0086      | 0.0081      | 0.0081                                      | R49         | -      | 0.0026      | 0.0024      | 0.0024                                       |
| R15         | 0.0100 | 0.0034      | 0.0031      | 0.0031                                      | R50         | -      | 0.0148      | 0.0138      | 0.0138                                       |
| R16         | 0.0100 | 0.0044      | 0.0041      | 0.0041                                      | R51         | -      | 0.0081      | 0.0075      | 0.0075                                       |
| R17         | 0.0100 | 0.0074      | 0.0069      | 0.0069                                      | R52         | -      | 0.0088      | 0.0082      | 0.0082                                       |
| R18         | 0.0100 | 0.0055      | 0.0051      | 0.0051                                      | R53         | -      | 0.0052      | 0.0048      | 0.0048                                       |

|             |        | BAU         | MOD6 C      | perational                                  |             |     | BAU         | MOD6 O      | perational                                   |
|-------------|--------|-------------|-------------|---------------------------------------------|-------------|-----|-------------|-------------|----------------------------------------------|
| Receptor ID | PPR    | Incremental | Incremental | Cumulative<br>(Incremental +<br>background) | Receptor ID | PPR | Incremental | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion   | n/a    | n/a         | n/a         | n/a                                         | Criterion   | n/a | n/a         | n/a         | n/a                                          |
| R19         | 0.0100 | 0.0029      | 0.0027      | 0.0027                                      | R54         | -   | 0.0061      | 0.0057      | 0.0057                                       |
| R20         | 0.0100 | 0.0028      | 0.0026      | 0.0026                                      | R55         | -   | 0.0021      | 0.0020      | 0.0020                                       |
| R21         | 0.0500 | 0.0259      | 0.0250      | 0.0250                                      | R56         | -   | 0.0023      | 0.0021      | 0.0021                                       |
| R22         | 0.0600 | 0.0274      | 0.0260      | 0.0260                                      | R57         | -   | 0.0043      | 0.0040      | 0.0040                                       |
| R23         | 0.0800 | 0.0324      | 0.0298      | 0.0298                                      | R58         | -   | 0.0022      | 0.0020      | 0.0020                                       |
| R24         | 0.1100 | 0.0368      | 0.0336      | 0.0336                                      | R59         | -   | 0.0011      | 0.0010      | 0.0010                                       |
| R25         | 0.0400 | 0.0185      | 0.0175      | 0.0175                                      | R60         | -   | 0.0070      | 0.0064      | 0.0064                                       |
| R26         | 0.1500 | 0.0506      | 0.0460      | 0.0460                                      | R61         | -   | 0.0023      | 0.0021      | 0.0021                                       |
| R27         | 0.2000 | 0.0687      | 0.0672      | 0.0672                                      | R62         | -   | 0.0045      | 0.0042      | 0.0042                                       |
| R28         | 0.1500 | 0.0566      | 0.0550      | 0.0550                                      | R63         | -   | 0.0032      | 0.0030      | 0.0030                                       |
| R29         | 0.1400 | 0.0442      | 0.0422      | 0.0422                                      | R64         | -   | 0.0053      | 0.0048      | 0.0048                                       |
| R30         | 0.1000 | 0.0386      | 0.0365      | 0.0365                                      | R65         | -   | 0.0143      | 0.0132      | 0.0132                                       |
| R31         | 0.0600 | 0.0202      | 0.0188      | 0.0188                                      | R66         | -   | 0.0090      | 0.0083      | 0.0083                                       |
| R32         | 0.0500 | 0.0191      | 0.0178      | 0.0178                                      | R67         | -   | 0.0095      | 0.0087      | 0.0087                                       |
| R33         | 0.0500 | 0.0233      | 0.0207      | 0.0207                                      | R68         | -   | 0.0078      | 0.0074      | 0.0074                                       |
| R34         | 0.0400 | 0.0250      | 0.0236      | 0.0236                                      | R69         | -   | 0.0063      | 0.0059      | 0.0059                                       |
| R35         | 0.0400 | 0.0220      | 0.0206      | 0.0206                                      | R70         | -   | 0.0052      | 0.0049      | 0.0049                                       |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The background annual lead deposition rates adopted for this assessment are 0 g/m²/year. As such, there is no difference between the incremetal and cumulative results.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

#### PPR, BAU and MOD6 operational scenarios – Predicted annual average TSP

BAU **MOD6** Operational BAU **MOD6** Operational Receptor Receptor **Cumulative Cumulative Cumulative Cumulative** PPR PPR ID ID (Incremental + Incremental (Incremental + Incremental (Incremental + Incremental Incremental (Incremental + background) background) background) background) Criterion n/a n/a 90 n/a 90 Criterion n/a n/a 90 n/a 90 R1 1.5000 0.6252 36.2298 36.1814 R36 1.2000 0.5118 36.1487 0.4207 36.0576 0.5769 R2 0.7817 R37 36.0716 1.4000 36.3212 0.6711 36.2106 1.2000 0.4602 36.1307 0.4011 R3 2.1000 1.3667 36.6386 1.1396 36.4115 R38 0.4000 0.2164 35.9967 0.1607 35.9409 R4 1.4000 0.6044 0.4789 36.0306 R39 0.2193 35.9945 35.9369 36.1561 0.4000 0.1616 R5 1.0000 0.4860 36.0959 0.3738 35.9838 R40 0.9000 0.4606 36.1184 0.3570 36.0148 R6 1.2000 0.4765 36.0615 0.3494 35.9343 R41 1.1000 0.5388 36.1404 0.4228 36.0243 R7 0.5000 0.2237 35.9888 0.1796 35.9447 R42 1.2000 0.6063 36.1788 0.4793 36.0518 R8 0.9000 0.5277 36.1322 0.3951 35.9996 R43 0.6741 36.3170 0.6386 36.2816 R9 0.8000 0.4192 36.0911 0.3241 35.9960 R44 0.1069 35.9399 0.0864 35.9194 R10 0.8000 0.3760 36.0602 0.2960 35.9801 R45 0.2431 35.9895 0.2012 35.9476 -R11 0.7000 0.3325 36.0367 0.2603 35.9646 R46 0.1306 35.9381 0.1020 35.9095 R12 0.5000 0.2430 35.9988 0.2013 35.9571 R47 0.2857 36.0244 0.2366 35.9753 -R13 0.5000 0.2086 35.9835 0.1733 35.9481 R48 0.1224 35.9549 0.1047 35.9372 0.5000 R14 0.2438 36.0016 0.1941 35.9519 R49 0.0578 35.9247 0.0490 35.9158 R15 0.2000 0.0844 35.9348 0.0696 35.9200 R50 0.3697 36.0353 0.3044 35.9700 -0.1035 35.9462 35.9310 35.8608 R16 0.2000 0.0883 R51 0.2478 35.9135 0.1952 -R17 0.4000 0.1916 35.9807 0.1569 35.9460 R52 -0.2719 35.9375 0.2126 35.8782 R18 0.3000 0.1709 35.9601 0.1335 35.9227 R53 0.1605 35.8261 0.1256 35.7912 R19 0.2000 0.0677 35.9286 0.0573 35.9182 R54 0.1594 35.8250 0.1314 35.7970

Table B.3: Predicted incremental and cumulative annual average TSP concentrations (µg/m³) for the PPR, BAU and MOD6 operational scenarios

|                |        | E           | BAU                                          | MOD6 (      | Operational                                 |                |     | В           | AU                                           | MOD6 C      | perational                                  |
|----------------|--------|-------------|----------------------------------------------|-------------|---------------------------------------------|----------------|-----|-------------|----------------------------------------------|-------------|---------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulative<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulative<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 90                                           | n/a         | 90                                          | Criterion      | n/a | n/a         | 90                                           | n/a         | 90                                          |
| R20            | 0.2000 | 0.0674      | 35.9286                                      | 0.0562      | 35.9175                                     | R55            | -   | 0.0669      | 35.7325                                      | 0.0554      | 35.7210                                     |
| R21            | 1.8000 | 0.6952      | 36.2871                                      | 0.6109      | 36.2028                                     | R56            | -   | 0.0758      | 35.7414                                      | 0.0597      | 35.7253                                     |
| R22            | 1.9000 | 0.7018      | 36.2926                                      | 0.6045      | 36.1953                                     | R57            | -   | 0.1424      | 35.8080                                      | 0.1140      | 35.7796                                     |
| R23            | 2.0000 | 0.7591      | 36.3347                                      | 0.6507      | 36.2263                                     | R58            | -   | 0.0621      | 35.7277                                      | 0.0496      | 35.7152                                     |
| R24            | 2.2000 | 0.7963      | 36.3539                                      | 0.7014      | 36.2590                                     | R59            | -   | 0.0298      | 35.6955                                      | 0.0246      | 35.6902                                     |
| R25            | 1.2000 | 0.4604      | 36.1542                                      | 0.3994      | 36.0933                                     | R60            | -   | 0.1648      | 35.8305                                      | 0.1410      | 35.8066                                     |
| R26            | 2.3000 | 1.0101      | 36.4909                                      | 0.9077      | 36.3885                                     | R61            | -   | 0.0743      | 35.7399                                      | 0.0574      | 35.7230                                     |
| R27            | 2.9000 | 1.5176      | 36.7890                                      | 1.7633      | 37.0347                                     | R62            | -   | 0.1503      | 35.8159                                      | 0.1144      | 35.7800                                     |
| R28            | 2.3000 | 1.4941      | 36.8969                                      | 1.4945      | 36.8973                                     | R63            | -   | 0.0977      | 35.7633                                      | 0.0789      | 35.7445                                     |
| R29            | 2.2000 | 0.9305      | 36.4396                                      | 0.9934      | 36.5025                                     | R64            | -   | 0.1257      | 35.7913                                      | 0.1072      | 35.7728                                     |
| R30            | 1.7000 | 0.9991      | 36.5616                                      | 0.9164      | 36.4788                                     | R65            | -   | 0.3331      | 35.9987                                      | 0.2999      | 35.9655                                     |
| R31            | 1.1000 | 0.4591      | 36.1524                                      | 0.4328      | 36.1262                                     | R66            | -   | 0.2189      | 35.8846                                      | 0.1884      | 35.8540                                     |
| R32            | 1.0000 | 0.4433      | 36.1563                                      | 0.4066      | 36.1195                                     | R67            | -   | 0.2269      | 35.8925                                      | 0.1953      | 35.8610                                     |
| R33            | 0.9000 | 0.6333      | 36.3581                                      | 0.5079      | 36.2326                                     | R68            | -   | 0.1957      | 35.8613                                      | 0.1701      | 35.8357                                     |
| R34            | 1.2000 | 0.5715      | 36.1677                                      | 0.4507      | 36.0469                                     | R69            | -   | 0.1574      | 35.8230                                      | 0.1352      | 35.8008                                     |
| R35            | 1.2000 | 0.5504      | 36.1656                                      | 0.4338      | 36.0490                                     | R70            | -   | 0.1463      | 35.8120                                      | 0.1218      | 35.7874                                     |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

# PPR, BAU and MOD6 operational scenarios – Predicted annual average $PM_{10}$

|                |        |             | BAU                                       | MOD6        | Operational                                  |                |        |             | BAU                                       | MOD6        | Operational                                  |
|----------------|--------|-------------|-------------------------------------------|-------------|----------------------------------------------|----------------|--------|-------------|-------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 25                                        | n/a         | 25                                           | Criterion      | n/a    | n/a         | 25                                        | n/a         | 25                                           |
| R1             | 0.4000 | 0.4481      | 13.1405                                   | 0.3731      | 13.0655                                      | R36            | 0.4000 | 0.3748      | 13.2370                                   | 0.2819      | 13.1441                                      |
| R2             | 0.5000 | 0.5378      | 13.2331                                   | 0.4254      | 13.1206                                      | R37            | 0.4000 | 0.3481      | 13.2344                                   | 0.2700      | 13.1564                                      |
| R3             | 0.8000 | 0.8014      | 13.3074                                   | 0.6381      | 13.1442                                      | R38            | 0.1000 | 0.1720      | 13.1732                                   | 0.1226      | 13.1237                                      |
| R4             | 0.5000 | 0.4392      | 13.1469                                   | 0.3362      | 13.0439                                      | R39            | 0.2000 | 0.1735      | 13.1665                                   | 0.1234      | 13.1165                                      |
| R5             | 0.4000 | 0.3729      | 13.1311                                   | 0.2807      | 13.0389                                      | R40            | 0.3000 | 0.3366      | 13.2118                                   | 0.2644      | 13.1396                                      |
| R6             | 0.6000 | 0.3189      | 13.0747                                   | 0.2410      | 12.9968                                      | R41            | 0.3000 | 0.4081      | 13.2348                                   | 0.3235      | 13.1503                                      |
| R7             | 0.2000 | 0.1733      | 13.1444                                   | 0.1387      | 13.1098                                      | R42            | 0.4000 | 0.4614      | 13.2449                                   | 0.3604      | 13.1440                                      |
| R8             | 0.4000 | 0.3643      | 13.2073                                   | 0.2777      | 13.1207                                      | R43            | -      | 0.4704      | 13.3247                                   | 0.3910      | 13.2453                                      |
| R9             | 0.3000 | 0.3010      | 13.2005                                   | 0.2337      | 13.1333                                      | R44            | -      | 0.0960      | 13.0378                                   | 0.0705      | 13.0124                                      |
| R10            | 0.2000 | 0.2864      | 13.1968                                   | 0.2204      | 13.1308                                      | R45            | -      | 0.2154      | 13.0771                                   | 0.1614      | 13.0231                                      |
| R11            | 0.3000 | 0.2705      | 13.1047                                   | 0.2025      | 13.0368                                      | R46            | -      | 0.1220      | 13.0422                                   | 0.0886      | 13.0088                                      |
| R12            | 0.2000 | 0.2179      | 13.0879                                   | 0.1630      | 13.0329                                      | R47            | -      | 0.2228      | 13.1777                                   | 0.1677      | 13.1226                                      |
| R13            | 0.2000 | 0.1871      | 13.0757                                   | 0.1398      | 13.0284                                      | R48            | -      | 0.1069      | 13.1439                                   | 0.0815      | 13.1185                                      |
| R14            | 0.2000 | 0.1831      | 13.1585                                   | 0.1397      | 13.1150                                      | R49            | -      | 0.0596      | 13.1219                                   | 0.0454      | 13.1078                                      |
| R15            | 0.1000 | 0.0809      | 13.1289                                   | 0.0613      | 13.1094                                      | R50            | -      | 0.2738      | 13.1572                                   | 0.2041      | 13.0875                                      |
| R16            | 0.1000 | 0.0942      | 13.1375                                   | 0.0720      | 13.1153                                      | R51            | -      | 0.1865      | 13.0699                                   | 0.1412      | 13.0247                                      |
| R17            | 0.1000 | 0.1538      | 13.1498                                   | 0.1189      | 13.1149                                      | R52            | -      | 0.2067      | 13.0901                                   | 0.1565      | 13.0400                                      |
| R18            | 0.1000 | 0.1561      | 13.0609                                   | 0.1133      | 13.0181                                      | R53            | -      | 0.1475      | 12.9310                                   | 0.1071      | 12.8905                                      |
| R19            | 0.1000 | 0.0675      | 13.1265                                   | 0.0513      | 13.1103                                      | R54            | -      | 0.1295      | 13.0130                                   | 0.1021      | 12.9856                                      |

Table B.4: Predicted annual average PM<sub>10</sub> concentration (µg/m<sup>3</sup>) for the PPR, BAU and MOD6 operational scenarios

|                |        |             | BAU                                       | MOD6        | Operational                                  |                |     |             | BAU                                       | MOD6        | Operational                                  |
|----------------|--------|-------------|-------------------------------------------|-------------|----------------------------------------------|----------------|-----|-------------|-------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulative<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 25                                        | n/a         | 25                                           | Criterion      | n/a | n/a         | 25                                        | n/a         | 25                                           |
| R20            | 0.1000 | 0.0701      | 13.1258                                   | 0.0540      | 13.1097                                      | R55            | -   | 0.0658      | 12.8492                                   | 0.0482      | 12.8317                                      |
| R21            | 0.6000 | 0.5051      | 13.1578                                   | 0.4021      | 13.0549                                      | R56            | -   | 0.0730      | 12.9564                                   | 0.0534      | 12.9368                                      |
| R22            | 0.6000 | 0.5116      | 13.1598                                   | 0.3982      | 13.0463                                      | R57            | -   | 0.1175      | 12.9009                                   | 0.0901      | 12.8736                                      |
| R23            | 0.6000 | 0.5294      | 13.1765                                   | 0.4096      | 13.0567                                      | R58            | -   | 0.0625      | 12.9460                                   | 0.0482      | 12.9317                                      |
| R24            | 0.7000 | 0.5432      | 13.2039                                   | 0.4332      | 13.0939                                      | R59            | -   | 0.0362      | 12.8196                                   | 0.0268      | 12.8103                                      |
| R25            | 0.4000 | 0.3350      | 13.0939                                   | 0.2678      | 13.0267                                      | R60            | -   | 0.1356      | 13.0190                                   | 0.1034      | 12.9868                                      |
| R26            | 0.8000 | 0.6662      | 13.3098                                   | 0.5478      | 13.1914                                      | R61            | -   | 0.0684      | 12.8519                                   | 0.0482      | 12.8317                                      |
| R27            | 1.0000 | 1.0421      | 13.6214                                   | 1.0271      | 13.6064                                      | R62            | -   | 0.1269      | 12.9104                                   | 0.0890      | 12.8725                                      |
| R28            | 0.8000 | 0.9952      | 13.6383                                   | 0.9032      | 13.5463                                      | R63            | -   | 0.0861      | 12.9696                                   | 0.0678      | 12.9513                                      |
| R29            | 0.7000 | 0.6664      | 13.4139                                   | 0.6019      | 13.3494                                      | R64            | -   | 0.1070      | 12.9905                                   | 0.0820      | 12.9654                                      |
| R30            | 0.6000 | 0.6833      | 13.4589                                   | 0.5639      | 13.3395                                      | R65            | -   | 0.2495      | 13.1329                                   | 0.1976      | 13.0811                                      |
| R31            | 0.4000 | 0.3342      | 13.2455                                   | 0.2733      | 13.1846                                      | R66            | -   | 0.1703      | 13.0538                                   | 0.1304      | 13.0138                                      |
| R32            | 0.3000 | 0.3176      | 13.2402                                   | 0.2564      | 13.1790                                      | R67            | -   | 0.1786      | 13.0621                                   | 0.1370      | 13.0205                                      |
| R33            | 0.3000 | 0.4349      | 13.3137                                   | 0.3386      | 13.2174                                      | R68            | -   | 0.1624      | 12.9459                                   | 0.1250      | 12.9085                                      |
| R34            | 0.4000 | 0.4292      | 13.2356                                   | 0.3248      | 13.1311                                      | R69            | -   | 0.1273      | 12.9107                                   | 0.0960      | 12.8795                                      |
| R35            | 0.4000 | 0.3977      | 13.2361                                   | 0.2924      | 13.1308                                      | R70            | -   | 0.1318      | 12.9153                                   | 0.0987      | 12.8822                                      |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

#### PPR, BAU and MOD6 operational scenarios – Predicted maximum 24-hour average PM<sub>10</sub>

|                |        |             | BAU                                       | MOD6 O      | perational                                     |             |        | E           | BAU                                        | MOD6 O      | perational                                   |
|----------------|--------|-------------|-------------------------------------------|-------------|------------------------------------------------|-------------|--------|-------------|--------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background) | Incremental | Cumulative<br>(Incremental<br>+<br>background) | Receptor ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 50                                        | n/a         | 50                                             | Criterion   | n/a    | n/a         | 50                                         | n/a         | 50                                           |
| R1             | 2.5000 | 2.7106      | 36.2146                                   | 2.3858      | 36.1458                                        | R36         | 1.6000 | 2.8806      | 45.7813                                    | 2.4337      | 45.7434                                      |
| R2             | 3.1000 | 5.0692      | 45.6505                                   | 4.5000      | 45.6469                                        | R37         | 1.9000 | 2.5176      | 45.5316                                    | 1.9967      | 45.5141                                      |
| R3             | 5.1000 | 5.2081      | 37.6258                                   | 4.6228      | 37.6999                                        | R38         | 1.4000 | 1.3605      | 45.8523                                    | 1.5421      | 45.8505                                      |
| R4             | 3.1000 | 3.5197      | 36.3044                                   | 2.6820      | 36.2127                                        | R39         | 1.3000 | 1.5304      | 36.1487                                    | 1.2523      | 36.1482                                      |
| R5             | 3.1000 | 3.6748      | 36.1480                                   | 3.0438      | 36.1475                                        | R40         | 2.0000 | 3.4393      | 36.2346                                    | 3.2959      | 36.2425                                      |
| R6             | 4.7000 | 2.6637      | 45.7240                                   | 2.0070      | 45.7226                                        | R41         | 2.1000 | 3.0409      | 36.3621                                    | 2.7391      | 36.3563                                      |
| R7             | 1.2000 | 1.9978      | 45.9010                                   | 1.7502      | 45.8941                                        | R42         | 2.1000 | 3.8493      | 46.6449                                    | 3.4527      | 46.6059                                      |
| R8             | 2.3000 | 2.5154      | 46.1348                                   | 1.9911      | 46.1274                                        | R43         | -      | 2.7302      | 46.2490                                    | 2.4865      | 46.2735                                      |
| R9             | 1.6000 | 2.1332      | 46.1439                                   | 1.9076      | 46.0849                                        | R44         | -      | 0.6792      | 45.9382                                    | 0.5258      | 45.9370                                      |
| R10            | 1.4000 | 2.0076      | 36.2523                                   | 1.7981      | 36.2555                                        | R45         | -      | 1.2936      | 36.1285                                    | 1.0300      | 36.1278                                      |
| R11            | 2.2000 | 2.6181      | 45.9561                                   | 1.8822      | 45.9545                                        | R46         | -      | 1.2789      | 36.1159                                    | 0.9713      | 36.1155                                      |
| R12            | 1.9000 | 1.5658      | 36.1196                                   | 1.1306      | 36.1189                                        | R47         | -      | 1.3093      | 46.0913                                    | 1.0627      | 46.0399                                      |
| R13            | 1.8000 | 1.2738      | 45.9118                                   | 0.9423      | 45.9099                                        | R48         | -      | 0.8871      | 45.7048                                    | 0.8840      | 45.6923                                      |
| R14            | 1.0000 | 1.5108      | 36.1577                                   | 1.2702      | 36.1623                                        | R49         | -      | 0.5119      | 45.7314                                    | 0.3927      | 45.7184                                      |
| R15            | 0.6000 | 0.7405      | 36.1598                                   | 0.5959      | 36.1552                                        | R50         | -      | 1.6312      | 45.8963                                    | 1.4928      | 45.8446                                      |
| R16            | 0.8000 | 0.8574      | 36.1873                                   | 0.9298      | 36.1840                                        | R51         | -      | 1.4825      | 45.9830                                    | 1.2440      | 45.9234                                      |
| R17            | 0.9000 | 1.3584      | 36.2169                                   | 1.1059      | 36.2059                                        | R52         | -      | 1.6223      | 46.0005                                    | 1.3630      | 45.9368                                      |
| R18            | 1.0000 | 1.6971      | 36.1254                                   | 1.3058      | 36.1249                                        | R53         | -      | 1.6022      | 36.1206                                    | 1.2265      | 36.1202                                      |
| R19            | 0.6000 | 0.8543      | 36.1615                                   | 0.8603      | 36.1573                                        | R54         | -      | 1.1475      | 45.8539                                    | 1.0310      | 45.8177                                      |

Table B.5: Predicted maximum 24-hour average PM<sub>10</sub> concentration (µg/m<sup>3</sup>) for the PPR, BAU and MOD6 operational scenarios

|                |        |             | BAU                                        | MOD6 O      | perational                                     |             |     | E           | BAU                                        | MOD6 O      | perational                                   |
|----------------|--------|-------------|--------------------------------------------|-------------|------------------------------------------------|-------------|-----|-------------|--------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental | Cumulative<br>(Incremental<br>+<br>background) | Receptor ID | PPR | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 50                                         | n/a         | 50                                             | Criterion   | n/a | n/a         | 50                                         | n/a         | 50                                           |
| R20            | 0.6000 | 0.7188      | 45.7114                                    | 0.5641      | 45.7044                                        | R55         | -   | 0.9168      | 36.1204                                    | 0.7584      | 36.1199                                      |
| R21            | 3.5000 | 2.8286      | 45.8183                                    | 3.0228      | 45.8152                                        | R56         | -   | 0.8870      | 45.7094                                    | 0.6579      | 45.7033                                      |
| R22            | 4.1000 | 2.9948      | 45.7326                                    | 2.6007      | 45.7285                                        | R57         | -   | 1.2655      | 36.1245                                    | 0.9288      | 36.1241                                      |
| R23            | 4.0000 | 2.7555      | 36.1070                                    | 2.3419      | 36.1084                                        | R58         | -   | 0.5725      | 45.7799                                    | 0.5083      | 45.7719                                      |
| R24            | 5.0000 | 2.8825      | 45.8712                                    | 2.5759      | 45.8639                                        | R59         | -   | 0.4148      | 36.1174                                    | 0.2730      | 36.1172                                      |
| R25            | 2.3000 | 1.9529      | 45.8541                                    | 1.6580      | 45.8515                                        | R60         | -   | 1.0895      | 45.7971                                    | 0.8160      | 45.7859                                      |
| R26            | 6.3000 | 3.8962      | 45.9221                                    | 3.6704      | 45.9132                                        | R61         | -   | 0.6026      | 36.1193                                    | 0.3868      | 36.1188                                      |
| R27            | 7.4000 | 6.0472      | 46.7060                                    | 6.4369      | 46.9197                                        | R62         | -   | 1.0896      | 36.1227                                    | 0.6813      | 36.1222                                      |
| R28            | 4.7000 | 6.6168      | 46.1547                                    | 6.3830      | 46.3039                                        | R63         | -   | 0.7406      | 45.8140                                    | 0.6651      | 45.7800                                      |
| R29            | 3.8000 | 3.7467      | 46.2646                                    | 4.0163      | 46.3435                                        | R64         | -   | 0.8018      | 45.7086                                    | 0.6311      | 45.7000                                      |
| R30            | 3.0000 | 4.4027      | 46.1655                                    | 3.9679      | 46.2185                                        | R65         | -   | 1.2733      | 45.8794                                    | 1.5787      | 45.8684                                      |
| R31            | 2.3000 | 1.9338      | 46.0167                                    | 1.9922      | 46.0418                                        | R66         | -   | 1.3553      | 45.8237                                    | 1.0363      | 45.8262                                      |
| R32            | 1.8000 | 1.7877      | 46.2021                                    | 1.7952      | 46.1955                                        | R67         | -   | 1.4600      | 45.8277                                    | 1.1279      | 45.8284                                      |
| R33            | 3.0000 | 3.3741      | 46.0015                                    | 2.4848      | 45.9897                                        | R68         | -   | 1.0043      | 36.1269                                    | 0.8035      | 36.1261                                      |
| R34            | 1.8000 | 3.5195      | 36.6988                                    | 3.0751      | 36.6305                                        | R69         | -   | 0.9792      | 36.1247                                    | 0.7089      | 36.1240                                      |
| R35            | 2.2000 | 2.3080      | 45.9672                                    | 1.8500      | 45.9013                                        | R70         | -   | 0.8687      | 36.1232                                    | 0.6782      | 36.1225                                      |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

#### PPR, BAU and MOD6 operational scenarios – Predicted annual average PM<sub>2.5</sub>

|                |        |             | BAU                                        | MOD6        | Operational                                  |                |        |             | BAU                                       | MOD6        | Operational                                 |
|----------------|--------|-------------|--------------------------------------------|-------------|----------------------------------------------|----------------|--------|-------------|-------------------------------------------|-------------|---------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background | Incremental | Cumulative<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 8                                          | n/a         | 8                                            | Criterion      | n/a    | n/a         | 8                                         | n/a         | 8                                           |
| R1             | 0.1200 | 0.1354      | 5.3688                                     | 0.1306      | 5.3641                                       | R36            | 0.1000 | 0.1217      | 5.4156                                    | 0.0980      | 5.3920                                      |
| R2             | 0.1300 | 0.1424      | 5.3707                                     | 0.1351      | 5.3634                                       | R37            | 0.1000 | 0.1131      | 5.4133                                    | 0.0927      | 5.3929                                      |
| R3             | 0.2400 | 0.2079      | 5.3887                                     | 0.2011      | 5.3819                                       | R38            | 0.0400 | 0.0477      | 5.3730                                    | 0.0410      | 5.3663                                      |
| R4             | 0.1700 | 0.1199      | 5.3483                                     | 0.1111      | 5.3394                                       | R39            | 0.0400 | 0.0491      | 5.3725                                    | 0.0419      | 5.3652                                      |
| R5             | 0.1300 | 0.1025      | 5.3426                                     | 0.0931      | 5.3333                                       | R40            | 0.0900 | 0.0995      | 5.3914                                    | 0.0882      | 5.3802                                      |
| R6             | 0.1400 | 0.0877      | 5.3276                                     | 0.0777      | 5.3176                                       | R41            | 0.1000 | 0.1229      | 5.4026                                    | 0.1071      | 5.3867                                      |
| R7             | 0.0500 | 0.0540      | 5.3712                                     | 0.0480      | 5.3652                                       | R42            | 0.1000 | 0.1390      | 5.4068                                    | 0.1176      | 5.3853                                      |
| R8             | 0.1100 | 0.1009      | 5.3856                                     | 0.0894      | 5.3740                                       | R43            | -      | 0.1532      | 5.4481                                    | 0.1223      | 5.4173                                      |
| R9             | 0.0800 | 0.0877      | 5.3859                                     | 0.0769      | 5.3751                                       | R44            | -      | 0.0299      | 5.3147                                    | 0.0261      | 5.3109                                      |
| R10            | 0.0700 | 0.0878      | 5.3890                                     | 0.0748      | 5.3760                                       | R45            | -      | 0.0641      | 5.3289                                    | 0.0573      | 5.3221                                      |
| R11            | 0.0700 | 0.0760      | 5.3351                                     | 0.0686      | 5.3277                                       | R46            | -      | 0.0362      | 5.3157                                    | 0.0315      | 5.3110                                      |
| R12            | 0.0500 | 0.0648      | 5.3317                                     | 0.0579      | 5.3249                                       | R47            | -      | 0.0732      | 5.3862                                    | 0.0603      | 5.3733                                      |
| R13            | 0.0400 | 0.0564      | 5.3279                                     | 0.0501      | 5.3216                                       | R48            | -      | 0.0350      | 5.3692                                    | 0.0288      | 5.3631                                      |
| R14            | 0.0500 | 0.0598      | 5.3770                                     | 0.0508      | 5.3679                                       | R49            | -      | 0.0199      | 5.3602                                    | 0.0165      | 5.3568                                      |
| R15            | 0.0200 | 0.0278      | 5.3639                                     | 0.0233      | 5.3594                                       | R50            | -      | 0.0887      | 5.3874                                    | 0.0726      | 5.3712                                      |
| R16            | 0.0300 | 0.0308      | 5.3667                                     | 0.0255      | 5.3613                                       | R51            | -      | 0.0579      | 5.3565                                    | 0.0492      | 5.3478                                      |
| R17            | 0.0400 | 0.0519      | 5.3742                                     | 0.0440      | 5.3664                                       | R52            | -      | 0.0633      | 5.3620                                    | 0.0539      | 5.3525                                      |
| R18            | 0.0300 | 0.0456      | 5.3214                                     | 0.0399      | 5.3156                                       | R53            | -      | 0.0433      | 5.2919                                    | 0.0378      | 5.2864                                      |
| R19            | 0.0200 | 0.0219      | 5.3616                                     | 0.0182      | 5.3578                                       | R54            | -      | 0.0448      | 5.3435                                    | 0.0384      | 5.3370                                      |

Table B.6: Predicted incremental annual average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for the PPR, BAU and MOD6 operational scenarios

|                |        |             | BAU                                        | MOD6 Operational |                                              |                |     |             | BAU                                       | MOD6 Operational |                                              |
|----------------|--------|-------------|--------------------------------------------|------------------|----------------------------------------------|----------------|-----|-------------|-------------------------------------------|------------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental      | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulativ e<br>(Increment +<br>background | Incremental      | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 8                                          | n/a              | 8                                            | Criterion      | n/a | n/a         | 8                                         | n/a              | 8                                            |
| R20            | 0.0200 | 0.0244      | 5.3624                                     | 0.0206           | 5.3585                                       | R55            | -   | 0.0217      | 5.2704                                    | 0.0184           | 5.2670                                       |
| R21            | 0.1600 | 0.1589      | 5.3854                                     | 0.1442           | 5.3706                                       | R56            | -   | 0.0240      | 5.3227                                    | 0.0202           | 5.3189                                       |
| R22            | 0.1800 | 0.1652      | 5.3902                                     | 0.1441           | 5.3691                                       | R57            | -   | 0.0376      | 5.2862                                    | 0.0322           | 5.2808                                       |
| R23            | 0.1700 | 0.1779      | 5.4020                                     | 0.1522           | 5.3763                                       | R58            | -   | 0.0218      | 5.3205                                    | 0.0186           | 5.3173                                       |
| R24            | 0.1900 | 0.1897      | 5.4131                                     | 0.1639           | 5.3874                                       | R59            | -   | 0.0117      | 5.2603                                    | 0.0100           | 5.2587                                       |
| R25            | 0.1100 | 0.1132      | 5.3595                                     | 0.0982           | 5.3445                                       | R60            | -   | 0.0441      | 5.3428                                    | 0.0363           | 5.3349                                       |
| R26            | 0.2000 | 0.2463      | 5.4553                                     | 0.2169           | 5.4260                                       | R61            | -   | 0.0208      | 5.2695                                    | 0.0177           | 5.2663                                       |
| R27            | 0.2500 | 0.3104      | 5.5436                                     | 0.2799           | 5.5131                                       | R62            | -   | 0.0365      | 5.2851                                    | 0.0311           | 5.2798                                       |
| R28            | 0.2100 | 0.3061      | 5.5576                                     | 0.2488           | 5.5003                                       | R63            | -   | 0.0290      | 5.3277                                    | 0.0253           | 5.3240                                       |
| R29            | 0.1900 | 0.2129      | 5.4812                                     | 0.1833           | 5.4516                                       | R64            | -   | 0.0345      | 5.3332                                    | 0.0283           | 5.3269                                       |
| R30            | 0.1500 | 0.2228      | 5.5018                                     | 0.1680           | 5.4470                                       | R65            | -   | 0.0817      | 5.3803                                    | 0.0663           | 5.3649                                       |
| R31            | 0.1000 | 0.1094      | 5.4157                                     | 0.0901           | 5.3964                                       | R66            | -   | 0.0554      | 5.3541                                    | 0.0457           | 5.3443                                       |
| R32            | 0.0900 | 0.1039      | 5.4140                                     | 0.0837           | 5.3937                                       | R67            | -   | 0.0582      | 5.3568                                    | 0.0478           | 5.3464                                       |
| R33            | 0.0900 | 0.1302      | 5.4422                                     | 0.1015           | 5.4135                                       | R68            | -   | 0.0516      | 5.3002                                    | 0.0458           | 5.2945                                       |
| R34            | 0.1000 | 0.1358      | 5.4100                                     | 0.1118           | 5.3860                                       | R69            | -   | 0.0418      | 5.2904                                    | 0.0364           | 5.2850                                       |
| R35            | 0.1000 | 0.1268      | 5.4127                                     | 0.1011           | 5.3870                                       | R70            | -   | 0.0407      | 5.2893                                    | 0.0359           | 5.2845                                       |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

|                |        |             | BAU                                       | MOD6 Operational |                                              |                |        |             | BAU                                      | MOD6 Operational |                                              |
|----------------|--------|-------------|-------------------------------------------|------------------|----------------------------------------------|----------------|--------|-------------|------------------------------------------|------------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background) | Incremental      | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR    | Incremental | Cumulative<br>(Increment +<br>background | Incremental      | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 25                                        | n/a              | 25                                           | Criterion      | n/a    | n/a         | 25                                       | n/a              | 25                                           |
| R1             | 1.0000 | 0.9747      | 14.7834                                   | 0.9061           | 14.7842                                      | R36            | 0.6000 | 0.9286      | 18.8150                                  | 0.8653           | 18.8055                                      |
| R2             | 1.1000 | 1.1469      | 14.7837                                   | 1.0622           | 14.7844                                      | R37            | 0.5000 | 0.7635      | 18.8095                                  | 0.6915           | 18.8068                                      |
| R3             | 1.5000 | 1.4889      | 14.8416                                   | 1.4767           | 14.8762                                      | R38            | 0.4000 | 0.3570      | 18.8006                                  | 0.3406           | 18.8004                                      |
| R4             | 0.9000 | 0.9802      | 14.7811                                   | 0.8611           | 14.7812                                      | R39            | 0.4000 | 0.4420      | 18.7968                                  | 0.4237           | 18.7964                                      |
| R5             | 0.9000 | 1.0855      | 14.7803                                   | 1.0225           | 14.7803                                      | R40            | 0.4000 | 1.2118      | 18.8453                                  | 1.1759           | 18.8427                                      |
| R6             | 1.6000 | 0.7364      | 14.7788                                   | 0.6683           | 14.7787                                      | R41            | 0.5000 | 1.1044      | 18.8471                                  | 1.0605           | 18.8515                                      |
| R7             | 0.5000 | 0.6351      | 18.7872                                   | 0.6073           | 18.7857                                      | R42            | 0.5000 | 1.2956      | 18.8448                                  | 1.2652           | 18.8445                                      |
| R8             | 0.8000 | 0.7317      | 18.7741                                   | 0.6983           | 18.7730                                      | R43            | -      | 0.9495      | 18.8554                                  | 0.8318           | 18.8537                                      |
| R9             | 0.5000 | 0.7152      | 18.8119                                   | 0.6736           | 18.8073                                      | R44            | -      | 0.2128      | 14.7816                                  | 0.2160           | 14.7815                                      |
| R10            | 0.3000 | 0.6788      | 18.8350                                   | 0.6686           | 18.8377                                      | R45            | -      | 0.4365      | 14.7815                                  | 0.3934           | 14.7815                                      |
| R11            | 0.6000 | 0.6735      | 14.7812                                   | 0.6090           | 14.7812                                      | R46            | -      | 0.4204      | 14.7814                                  | 0.3775           | 14.7814                                      |
| R12            | 0.6000 | 0.4485      | 14.7819                                   | 0.3990           | 14.7818                                      | R47            | -      | 0.4182      | 18.8195                                  | 0.3829           | 18.8101                                      |
| R13            | 0.5000 | 0.4105      | 14.7818                                   | 0.3697           | 14.7818                                      | R48            | -      | 0.2527      | 18.8138                                  | 0.2477           | 18.8106                                      |
| R14            | 0.2000 | 0.5408      | 18.8231                                   | 0.5089           | 18.8248                                      | R49            | -      | 0.1484      | 18.8084                                  | 0.1325           | 18.8060                                      |
| R15            | 0.1000 | 0.2475      | 18.8122                                   | 0.2286           | 18.8080                                      | R50            | -      | 0.4599      | 18.8596                                  | 0.4418           | 18.8491                                      |
| R16            | 0.2000 | 0.2446      | 18.8111                                   | 0.2478           | 18.8082                                      | R51            | -      | 0.5349      | 18.8687                                  | 0.4947           | 18.8658                                      |
| R17            | 0.2000 | 0.4520      | 18.8214                                   | 0.4166           | 18.8146                                      | R52            | -      | 0.5600      | 18.8728                                  | 0.5247           | 18.8697                                      |
| R18            | 0.3000 | 0.5401      | 14.7815                                   | 0.4873           | 14.7814                                      | R53            | -      | 0.5117      | 14.7818                                  | 0.4607           | 14.7818                                      |

### PPR, BAU and MOD6 operational scenarios – Predicted maximum 24-hour average $PM_{2.5}$

Table B.7: Predicted maximum 24-hour average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for the PPR, BAU and MOD6 operational scenarios

|                |        |             | BAU                                        | MOD6        | Operational                                  |                |     |             | BAU                                       | MOD6 Operational |                                              |
|----------------|--------|-------------|--------------------------------------------|-------------|----------------------------------------------|----------------|-----|-------------|-------------------------------------------|------------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Increment +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulativ e<br>(Increment +<br>background | Incremental      | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | n/a    | n/a         | 25                                         | n/a         | 25                                           | Criterion      | n/a | n/a         | 25                                        | n/a              | 25                                           |
| R19            | 0.2000 | 0.2090      | 18.8074                                    | 0.2099      | 18.8053                                      | R54            | -   | 0.3973      | 18.8464                                   | 0.3903           | 18.8402                                      |
| R20            | 0.1000 | 0.2724      | 18.8086                                    | 0.2478      | 18.8072                                      | R55            | -   | 0.3109      | 14.7817                                   | 0.2795           | 14.7816                                      |
| R21            | 1.4000 | 0.9784      | 14.7837                                    | 0.8719      | 14.7845                                      | R56            | -   | 0.2581      | 18.8047                                   | 0.2340           | 18.8040                                      |
| R22            | 1.4000 | 1.0239      | 14.7838                                    | 0.8879      | 14.7842                                      | R57            | -   | 0.3403      | 14.7833                                   | 0.3179           | 14.7832                                      |
| R23            | 1.1000 | 0.9734      | 14.7838                                    | 0.8885      | 14.7840                                      | R58            | -   | 0.1860      | 18.8259                                   | 0.1691           | 18.8245                                      |
| R24            | 1.5000 | 1.1925      | 14.7843                                    | 1.0350      | 14.7843                                      | R59            | -   | 0.1321      | 14.7806                                   | 0.1126           | 14.7806                                      |
| R25            | 0.7000 | 0.7573      | 14.7826                                    | 0.6953      | 14.7826                                      | R60            | -   | 0.3347      | 18.8272                                   | 0.2892           | 18.8237                                      |
| R26            | 1.8000 | 1.8022      | 14.7918                                    | 1.6030      | 14.7862                                      | R61            | -   | 0.1556      | 14.7813                                   | 0.1409           | 14.7812                                      |
| R27            | 2.3000 | 2.0047      | 18.8934                                    | 1.7737      | 18.9368                                      | R62            | -   | 0.2627      | 14.7826                                   | 0.2558           | 14.7825                                      |
| R28            | 1.6000 | 2.2321      | 18.8859                                    | 1.9437      | 18.9105                                      | R63            | -   | 0.2743      | 18.8302                                   | 0.2672           | 18.8276                                      |
| R29            | 1.3000 | 1.4099      | 18.8605                                    | 1.3841      | 18.8757                                      | R64            | -   | 0.2710      | 18.8014                                   | 0.2216           | 18.7992                                      |
| R30            | 1.0000 | 1.5146      | 18.8653                                    | 1.1927      | 18.8710                                      | R65            | -   | 0.4981      | 18.8496                                   | 0.4652           | 18.8434                                      |
| R31            | 0.7000 | 0.7202      | 18.8348                                    | 0.6670      | 18.8374                                      | R66            | -   | 0.4210      | 18.8369                                   | 0.3793           | 18.8359                                      |
| R32            | 0.6000 | 0.6540      | 18.8441                                    | 0.5888      | 18.8366                                      | R67            | -   | 0.4408      | 18.8375                                   | 0.3957           | 18.8357                                      |
| R33            | 1.0000 | 0.9595      | 18.8121                                    | 0.7245      | 18.8095                                      | R68            | -   | 0.3050      | 14.7958                                   | 0.3063           | 14.7952                                      |
| R34            | 0.5000 | 1.1759      | 18.8434                                    | 1.1032      | 18.8235                                      | R69            | -   | 0.3240      | 14.7833                                   | 0.3071           | 14.7829                                      |
| R35            | 0.6000 | 0.7058      | 18.8308                                    | 0.6860      | 18.8129                                      | R70            | -   | 0.2956      | 14.7826                                   | 0.2670           | 14.7826                                      |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

|                |        | I           | BAU                                         | MOD6        | Operational                                  |                |        |             | BAU                                          | MOD6        | Operational                                  |
|----------------|--------|-------------|---------------------------------------------|-------------|----------------------------------------------|----------------|--------|-------------|----------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental<br>+background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | 2      | 2           | 4                                           | 2           | 4                                            | Criterion      | 2      | 2           | 4                                            | 2           | 4                                            |
| R1             | 0.1900 | 0.1332      | 1.1867                                      | 0.1401      | 1.1935                                       | R36            | 0.1600 | 0.1011      | 0.4850                                       | 0.0934      | 0.4774                                       |
| R2             | 0.1800 | 0.1638      | 1.2121                                      | 0.1640      | 1.2123                                       | R37            | 0.1600 | 0.0908      | 0.4811                                       | 0.0916      | 0.4819                                       |
| R3             | 0.3200 | 0.2858      | 1.2866                                      | 0.2804      | 1.2812                                       | R38            | 0.0300 | 0.0345      | 0.8298                                       | 0.0284      | 0.8237                                       |
| R4             | 0.2500 | 0.1165      | 1.1649                                      | 0.1038      | 1.1521                                       | R39            | 0.0400 | 0.0358      | 0.8291                                       | 0.0298      | 0.8231                                       |
| R5             | 0.1600 | 0.0869      | 1.1470                                      | 0.0751      | 1.1352                                       | R40            | 0.1100 | 0.0967      | 0.4787                                       | 0.0862      | 0.4681                                       |
| R6             | 0.1700 | 0.0808      | 1.1407                                      | 0.0639      | 1.1238                                       | R41            | 0.1300 | 0.1188      | 0.4885                                       | 0.1075      | 0.4772                                       |
| R7             | 0.0400 | 0.0389      | 0.8261                                      | 0.0336      | 0.8208                                       | R42            | 0.1500 | 0.1436      | 0.5013                                       | 0.1298      | 0.4875                                       |
| R8             | 0.1200 | 0.0958      | 0.8504                                      | 0.0809      | 0.8356                                       | R43            | -      | 0.1429      | 3.2879                                       | 0.1673      | 3.3123                                       |
| R9             | 0.0900 | 0.0795      | 0.4676                                      | 0.0692      | 0.4573                                       | R44            | -      | 0.0200      | 0.9048                                       | 0.0182      | 0.9030                                       |
| R10            | 0.0900 | 0.0776      | 0.4688                                      | 0.0697      | 0.4609                                       | R45            | -      | 0.0466      | 0.9114                                       | 0.0435      | 0.9083                                       |
| R11            | 0.0800 | 0.0599      | 1.1390                                      | 0.0526      | 1.1317                                       | R46            | -      | 0.0222      | 0.9016                                       | 0.0185      | 0.8980                                       |
| R12            | 0.0600 | 0.0463      | 0.9133                                      | 0.0432      | 0.9102                                       | R47            | -      | 0.0612      | 0.4642                                       | 0.0563      | 0.4593                                       |
| R13            | 0.0500 | 0.0394      | 0.9109                                      | 0.0367      | 0.9082                                       | R48            | -      | 0.0258      | 0.4500                                       | 0.0249      | 0.4491                                       |
| R14            | 0.0500 | 0.0467      | 0.4538                                      | 0.0415      | 0.4486                                       | R49            | -      | 0.0135      | 0.4438                                       | 0.0127      | 0.4430                                       |
| R15            | 0.0200 | 0.0179      | 0.4440                                      | 0.0162      | 0.4422                                       | R50            | -      | 0.0770      | 3.2257                                       | 0.0707      | 3.2193                                       |
| R16            | 0.0300 | 0.0221      | 0.4480                                      | 0.0213      | 0.4471                                       | R51            | -      | 0.0467      | 0.4353                                       | 0.0410      | 0.4297                                       |
| R17            | 0.0500 | 0.0396      | 0.4520                                      | 0.0352      | 0.4476                                       | R52            | -      | 0.0520      | 0.4406                                       | 0.0457      | 0.4343                                       |
| R18            | 0.0200 | 0.0295      | 0.9053                                      | 0.0250      | 0.9007                                       | R53            | -      | 0.0276      | 0.8763                                       | 0.0233      | 0.8720                                       |

#### PPR, BAU and MOD6 operational scenarios - Predicted monthly average deposited dust

Table B.8: Predicted incremental and cumulative monthly average deposited dust (g/m²/month) for the PPR, BAU and MOD6 operational scenarios

|                |        |             | BAU                                         | MOD6 (      | Operational                                  |                |     |             | BAU                                          | MOD6        | Operational                                  |
|----------------|--------|-------------|---------------------------------------------|-------------|----------------------------------------------|----------------|-----|-------------|----------------------------------------------|-------------|----------------------------------------------|
| Receptor<br>ID | PPR    | Incremental | Cumulativ e<br>(Incremental<br>+background) | Incremental | Cumulativ e<br>(Incremental +<br>background) | Receptor<br>ID | PPR | Incremental | Cumulativ e<br>(Incremental +<br>background) | Incremental | Cumulativ e<br>(Incremental +<br>background) |
| Criterion      | 2      | 2           | 4                                           | 2           | 4                                            | Criterion      | 2   | 2           | 4                                            | 2           | 4                                            |
| R19            | 0.0200 | 0.0147      | 0.4444                                      | 0.0140      | 0.4436                                       | R54            | -   | 0.0327      | 3.1814                                       | 0.0293      | 3.1780                                       |
| R20            | 0.0200 | 0.0151      | 0.4430                                      | 0.0138      | 0.4418                                       | R55            | -   | 0.0106      | 0.3992                                       | 0.0091      | 0.3978                                       |
| R21            | 0.2800 | 0.1413      | 1.1877                                      | 0.1454      | 1.1919                                       | R56            | -   | 0.0123      | 0.4009                                       | 0.0105      | 0.3991                                       |
| R22            | 0.3200 | 0.1413      | 1.1862                                      | 0.1420      | 1.1870                                       | R57            | -   | 0.0221      | 0.4107                                       | 0.0189      | 0.4075                                       |
| R23            | 0.3100 | 0.1521      | 1.1962                                      | 0.1489      | 1.1929                                       | R58            | -   | 0.0119      | 0.4005                                       | 0.0106      | 0.3992                                       |
| R24            | 0.3700 | 0.1644      | 1.2079                                      | 0.1635      | 1.2070                                       | R59            | -   | 0.0058      | 0.8544                                       | 0.0053      | 0.8539                                       |
| R25            | 0.1700 | 0.0940      | 1.1603                                      | 0.0943      | 1.1606                                       | R60            | -   | 0.0345      | 3.1832                                       | 0.0338      | 3.1824                                       |
| R26            | 0.4300 | 0.2054      | 1.2345                                      | 0.2064      | 1.2355                                       | R61            | -   | 0.0120      | 0.7806                                       | 0.0098      | 0.7785                                       |
| R27            | 0.4700 | 0.3167      | 3.3998                                      | 0.4744      | 3.5576                                       | R62            | -   | 0.0240      | 0.7927                                       | 0.0196      | 0.7883                                       |
| R28            | 0.3700 | 0.2939      | 3.3954                                      | 0.3895      | 3.4909                                       | R63            | -   | 0.0174      | 0.7861                                       | 0.0151      | 0.7837                                       |
| R29            | 0.3400 | 0.1982      | 3.3165                                      | 0.2654      | 3.3837                                       | R64            | -   | 0.0265      | 1.6352                                       | 0.0256      | 1.6343                                       |
| R30            | 0.2600 | 0.2028      | 3.3318                                      | 0.2354      | 3.3644                                       | R65            | -   | 0.0697      | 3.2183                                       | 0.0739      | 3.2225                                       |
| R31            | 0.1600 | 0.0954      | 3.2516                                      | 0.1086      | 3.2649                                       | R66            | -   | 0.0444      | 3.1931                                       | 0.0438      | 3.1924                                       |
| R32            | 0.1500 | 0.0939      | 3.2539                                      | 0.1033      | 3.2633                                       | R67            | -   | 0.0467      | 3.1953                                       | 0.0465      | 3.1951                                       |
| R33            | 0.1500 | 0.1319      | 1.7539                                      | 0.1165      | 1.7385                                       | R68            | -   | 0.0422      | 0.8908                                       | 0.0412      | 0.8898                                       |
| R34            | 0.1500 | 0.1344      | 0.4986                                      | 0.1205      | 0.4847                                       | R69            | -   | 0.0337      | 0.8823                                       | 0.0325      | 0.8811                                       |
| R35            | 0.1600 | 0.1185      | 0.4944                                      | 0.1058      | 0.4818                                       | R70            | -   | 0.0275      | 0.8762                                       | 0.0255      | 0.8742                                       |

Notes:

- The number of decimal places is shown so the reader can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The PPR assessment only contains modelled results for Receptors 1 to 42. Receptors 43 to 70 were added for subsequent assessments.

# MOD6 Construction and MOD4 scenarios – Predicted annual average lead (as TSP) concentrations

|                |                        | MOD6 Co                | Instruction                                    |                |                        | MOD6 Co                | nstruction                                     |
|----------------|------------------------|------------------------|------------------------------------------------|----------------|------------------------|------------------------|------------------------------------------------|
| Receptor<br>ID | MOD4 mine<br>increment | MOD6 mine<br>increment | Cumulative<br>(Incremental<br>+<br>background) | Receptor<br>ID | MOD4 mine<br>increment | MOD6 mine<br>increment | Cumulative<br>(Incremental<br>+<br>background) |
| Criterion      | n/a                    | n/a                    | 0.5                                            | Criterion      | n/a                    | n/a                    | 0.5                                            |
| R1             | 0.0080                 | 0.0085                 | 0.2317                                         | R36            | 0.0072                 | 0.0086                 | 0.2320                                         |
| R2             | 0.0106                 | 0.0084                 | 0.2296                                         | R37            | 0.0062                 | 0.0078                 | 0.2321                                         |
| R3             | 0.0187                 | 0.0152                 | 0.2293                                         | R38            | 0.0034                 | 0.0030                 | 0.2299                                         |
| R4             | 0.0103                 | 0.0073                 | 0.2285                                         | R39            | 0.0036                 | 0.0032                 | 0.2299                                         |
| R5             | 0.0082                 | 0.0062                 | 0.2287                                         | R40            | 0.0069                 | 0.0056                 | 0.2295                                         |
| R6             | 0.0089                 | 0.0065                 | 0.2284                                         | R41            | 0.0085                 | 0.0069                 | 0.2294                                         |
| R7             | 0.0038                 | 0.0036                 | 0.2300                                         | R42            | 0.0094                 | 0.0084                 | 0.2301                                         |
| R8             | 0.0083                 | 0.0072                 | 0.2296                                         | R43            | 0.0063                 | 0.0098                 | 0.2338                                         |
| R9             | 0.0066                 | 0.0056                 | 0.2297                                         | R44            | 0.0019                 | 0.0017                 | 0.2299                                         |
| R10            | 0.0061                 | 0.0055                 | 0.2299                                         | R45            | 0.0043                 | 0.0036                 | 0.2297                                         |
| R11            | 0.0055                 | 0.0044                 | 0.2294                                         | R46            | 0.0026                 | 0.0021                 | 0.2296                                         |
| R12            | 0.0041                 | 0.0036                 | 0.2299                                         | R47            | 0.0045                 | 0.0047                 | 0.2306                                         |
| R13            | 0.0035                 | 0.0032                 | 0.2300                                         | R48            | 0.0019                 | 0.0021                 | 0.2303                                         |
| R14            | 0.0040                 | 0.0039                 | 0.2302                                         | R49            | 0.0009                 | 0.0009                 | 0.2301                                         |
| R15            | 0.0014                 | 0.0014                 | 0.2301                                         | R50            | 0.0005                 | 0.0062                 | 0.2305                                         |
| R16            | 0.0016                 | 0.0017                 | 0.2302                                         | R51            | 0.0004                 | 0.0036                 | 0.2279                                         |
| R17            | 0.0031                 | 0.0032                 | 0.2303                                         | R52            | 0.0004                 | 0.0038                 | 0.2281                                         |
| R18            | 0.0031                 | 0.0026                 | 0.2297                                         | R53            | 0.0002                 | 0.0025                 | 0.2268                                         |
| R19            | 0.0011                 | 0.0011                 | 0.2301                                         | R54            | 0.0002                 | 0.0026                 | 0.2269                                         |
| R20            | 0.0011                 | 0.0011                 | 0.2301                                         | R55            | 0.0001                 | 0.0012                 | 0.2255                                         |
| R21            | 0.0080                 | 0.0099                 | 0.2329                                         | R56            | 0.0001                 | 0.0012                 | 0.2255                                         |
| R22            | 0.0079                 | 0.0106                 | 0.2336                                         | R57            | 0.0002                 | 0.0024                 | 0.2267                                         |
| R23            | 0.0083                 | 0.0127                 | 0.2352                                         | R58            | 0.0001                 | 0.0010                 | 0.2252                                         |
| R24            | 0.0090                 | 0.0140                 | 0.2359                                         | R59            | 0.0000                 | 0.0005                 | 0.2248                                         |
| R25            | 0.0055                 | 0.0072                 | 0.2324                                         | R60            | 0.0002                 | 0.0027                 | 0.2270                                         |
| R26            | 0.0112                 | 0.0193                 | 0.2388                                         | R61            | 0.0001                 | 0.0012                 | 0.2255                                         |
| R27            | 0.0160                 | 0.0227                 | 0.2396                                         | R62            | 0.0002                 | 0.0024                 | 0.2267                                         |
| R28            | 0.0153                 | 0.0192                 | 0.2387                                         | R63            | 0.0001                 | 0.0016                 | 0.2259                                         |
| R29            | 0.0106                 | 0.0150                 | 0.2358                                         | R64            | 0.0002                 | 0.0020                 | 0.2263                                         |
| R30            | 0.0103                 | 0.0131                 | 0.2355                                         | R65            | 0.0005                 | 0.0053                 | 0.2296                                         |

Table B.9: Predicted incremental and cumulative annual average lead (as TSP) concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario and MOD4 updated assessment

|                |                        | MOD6 Co                                              | onstruction |                |                        | MOD6 Construction      |                                                |  |
|----------------|------------------------|------------------------------------------------------|-------------|----------------|------------------------|------------------------|------------------------------------------------|--|
| Receptor<br>ID | MOD4 mine<br>increment | MOD6 mine (Incremental<br>increment +<br>background) |             | Receptor<br>ID | MOD4 mine<br>increment | MOD6 mine<br>increment | Cumulative<br>(Incremental<br>+<br>background) |  |
| Criterion      | n/a                    | n/a                                                  | 0.5         | Criterion      | n/a                    | n/a                    | 0.5                                            |  |
| R31            | 0.0058                 | 0.0075                                               | 0.2324      | R66            | 0.0003                 | 0.0037                 | 0.2280                                         |  |
| R32            | 0.0053                 | 0.0068                                               | 0.2322      | R67            | 0.0003                 | 0.0038                 | 0.2281                                         |  |
| R33            | 0.0048                 | 0.0073                                               | 0.2332      | R68            | 0.0004                 | 0.0029                 | 0.2272                                         |  |
| R34            | 0.0085                 | 0.0086                                               | 0.2310      | R69            | 0.0003                 | 0.0024                 | 0.2267                                         |  |
| R35            | 0.0079                 | 0.0087                                               | 0.2316      | R70            | 0.0002                 | 0.0023                 | 0.2266                                         |  |

# MOD6 Construction and MOD4 scenarios – Predicted annual average lead deposition

Table B.10: Predicted incremental and cumulative annual average lead deposition (as total particulate) ( $g/m^2/month$ ) for MOD6 construction scenario and MOD4 updated assessment

| Receptor<br>ID | MOD4 mine increment | MOD6 Construction<br>mine increment | Receptor<br>ID | MOD4 mine increment | MOD6 Construction<br>mine increment |
|----------------|---------------------|-------------------------------------|----------------|---------------------|-------------------------------------|
| Criterion      | n/a                 | n/a                                 | Criterion      | n/a                 | n/a                                 |
| R1             | 0.0187              | 0.0215                              | R36            | 0.0118              | 0.0197                              |
| R2             | 0.0226              | 0.0236                              | R37            | 0.0119              | 0.0187                              |
| R3             | 0.0347              | 0.0449                              | R38            | 0.0041              | 0.0057                              |
| R4             | 0.0206              | 0.0182                              | R39            | 0.0043              | 0.0060                              |
| R5             | 0.0139              | 0.0141                              | R40            | 0.0127              | 0.0134                              |
| R6             | 0.0134              | 0.0131                              | R41            | 0.0151              | 0.0176                              |
| R7             | 0.0047              | 0.0068                              | R42            | 0.0168              | 0.0238                              |
| R8             | 0.0126              | 0.0157                              | R43            | 0.0056              | 0.0259                              |
| R9             | 0.0095              | 0.0122                              | R44            | 0.0027              | 0.0034                              |
| R10            | 0.0095              | 0.0125                              | R45            | 0.0065              | 0.0081                              |
| R11            | 0.0084              | 0.0098                              | R46            | 0.0027              | 0.0039                              |
| R12            | 0.0065              | 0.0081                              | R47            | 0.0074              | 0.0113                              |
| R13            | 0.0054              | 0.0070                              | R48            | 0.0035              | 0.0049                              |
| R14            | 0.0055              | 0.0079                              | R49            | 0.0019              | 0.0024                              |
| R15            | 0.0023              | 0.0032                              | R50            | 0.0091              | 0.0145                              |
| R16            | 0.0030              | 0.0041                              | R51            | 0.0058              | 0.0073                              |
| R17            | 0.0047              | 0.0070                              | R52            | 0.0065              | 0.0079                              |
| R18            | 0.0036              | 0.0051                              | R53            | 0.0034              | 0.0048                              |
| R19            | 0.0020              | 0.0027                              | R54            | 0.0040              | 0.0058                              |
| R20            | 0.0020              | 0.0026                              | R55            | 0.0011              | 0.0020                              |
| R21            | 0.0188              | 0.0251                              | R56            | 0.0014              | 0.0021                              |
| R22            | 0.0188              | 0.0267                              | R57            | 0.0024              | 0.0040                              |
| R23            | 0.0213              | 0.0314                              | R58            | 0.0014              | 0.0020                              |
| R24            | 0.0253              | 0.0357                              | R59            | 0.0007              | 0.0010                              |
| R25            | 0.0125              | 0.0178                              | R60            | 0.0047              | 0.0066                              |
| R26            | 0.0342              | 0.0474                              | R61            | 0.0013              | 0.0021                              |
| R27            | 0.0501              | 0.0596                              | R62            | 0.0028              | 0.0042                              |
| R28            | 0.0466              | 0.0483                              | R63            | 0.0020              | 0.0030                              |
| R29            | 0.0317              | 0.0402                              | R64            | 0.0036              | 0.0048                              |
| R30            | 0.0315              | 0.0335                              | R65            | 0.0099              | 0.0132                              |
| R31            | 0.0141              | 0.0191                              | R66            | 0.0059              | 0.0086                              |
| R32            | 0.0136              | 0.0174                              | R67            | 0.0063              | 0.0090                              |

| Receptor<br>ID | MOD4 mine increment | MOD6 Construction<br>mine increment | Receptor<br>ID | MOD4 mine increment | MOD6 Construction<br>mine increment |
|----------------|---------------------|-------------------------------------|----------------|---------------------|-------------------------------------|
| Criterion      | n/a                 | n/a                                 | Criterion      | n/a                 | n/a                                 |
| R33            | 0.0144              | 0.0196                              | R68            | 0.0059              | 0.0073                              |
| R34            | 0.0146              | 0.0238                              | R69            | 0.0047              | 0.0059                              |
| R35            | 0.0128              | 0.0216                              | R70            | 0.0037              | 0.0049                              |

Notes:

- The number of decimal places is shown so the readers can see the changes across receptors, not because this reflects the level of accuracy that may be expected from the modelling.

- The background annual lead deposition rates adopted for this assessment are  $0 g/n^2/year$ . As such, there is no difference between the incremetal and cumulative results.

### MOD6 Construction and MOD4 scenarios – Predicted annual average TSP

Table B.11: Predicted incremental and cumulative annual average TSP concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario and MOD4 updated assessment

|                |                           | MOD6 Co           | Instruction                                    |             |                           | MOD6 Con      | struction                                      |
|----------------|---------------------------|-------------------|------------------------------------------------|-------------|---------------------------|---------------|------------------------------------------------|
| Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+<br>background) | Receptor ID | MOD4<br>mine<br>increment | Mineincrement | Cumulative<br>(Incremental<br>+<br>background) |
| Criterion      | n/a                       | n/a               | 90                                             | Criterion   | n/a                       | n/a           | 90                                             |
| R1             | 0.3553                    | 0.5251            | 36.1296                                        | R36         | 0.3012                    | 0.4985        | 36.1354                                        |
| R2             | 0.4422                    | 0.5882            | 36.1277                                        | R37         | 0.2644                    | 0.4687        | 36.1392                                        |
| R3             | 0.7510                    | 1.1459            | 36.4178                                        | R38         | 0.1345                    | 0.1598        | 35.9400                                        |
| R4             | 0.4177                    | 0.4639            | 36.0156                                        | R39         | 0.1396                    | 0.1657        | 35.9410                                        |
| R5             | 0.3253                    | 0.3594            | 35.9694                                        | R40         | 0.2816                    | 0.3300        | 35.9879                                        |
| R6             | 0.3468                    | 0.3516            | 35.9366                                        | R41         | 0.3484                    | 0.4006        | 36.0022                                        |
| R7             | 0.1499                    | 0.1794            | 35.9444                                        | R42         | 0.3883                    | 0.4786        | 36.0511                                        |
| R8             | 0.3302                    | 0.3953            | 35.9998                                        | R43         | 0.1174                    | 0.5870        | 36.2299                                        |
| R9             | 0.2598                    | 0.3111            | 35.9831                                        | R44         | 0.0730                    | 0.0868        | 35.9199                                        |
| R10            | 0.2466                    | 0.2908            | 35.9749                                        | R45         | 0.1611                    | 0.1990        | 35.9454                                        |
| R11            | 0.2190                    | 0.2513            | 35.9555                                        | R46         | 0.0935                    | 0.1037        | 35.9111                                        |
| R12            | 0.1625                    | 0.1986            | 35.9544                                        | R47         | 0.1778                    | 0.2583        | 35.9971                                        |
| R13            | 0.1405                    | 0.1717            | 35.9466                                        | R48         | 0.0795                    | 0.1112        | 35.9436                                        |
| R14            | 0.1586                    | 0.1963            | 35.9541                                        | R49         | 0.0379                    | 0.0522        | 35.9191                                        |
| R15            | 0.0562                    | 0.0718            | 35.9222                                        | R50         | 0.2260                    | 0.3405        | 36.0061                                        |
| R16            | 0.0675                    | 0.0926            | 35.9353                                        | R51         | 0.1595                    | 0.1884        | 35.8541                                        |
| R17            | 0.1247                    | 0.1647            | 35.9538                                        | R52         | 0.1747                    | 0.2037        | 35.8693                                        |
| R18            | 0.1216                    | 0.1343            | 35.9235                                        | R53         | 0.1146                    | 0.1266        | 35.7922                                        |
| R19            | 0.0454                    | 0.0601            | 35.9210                                        | R54         | 0.1029                    | 0.1358        | 35.8014                                        |
| R20            | 0.0449                    | 0.0578            | 35.9191                                        | R55         | 0.0475                    | 0.0571        | 35.7227                                        |
| R21            | 0.3642                    | 0.6124            | 36.2043                                        | R56         | 0.0518                    | 0.0590        | 35.7246                                        |
| R22            | 0.3610                    | 0.6383            | 36.2291                                        | R57         | 0.0943                    | 0.1175        | 35.7831                                        |
| R23            | 0.3734                    | 0.7351            | 36.3107                                        | R58         | 0.0407                    | 0.0509        | 35.7166                                        |
| R24            | 0.3936                    | 0.8148            | 36.3724                                        | R59         | 0.0202                    | 0.0245        | 35.6901                                        |
| R25            | 0.2419                    | 0.4228            | 36.1166                                        | R60         | 0.1037                    | 0.1514        | 35.8170                                        |
| R26            | 0.4746                    | 0.9961            | 36.4769                                        | R61         | 0.0528                    | 0.0598        | 35.7254                                        |
| R27            | 0.9458                    | 1.3177            | 36.5891                                        | R62         | 0.1039                    | 0.1180        | 35.7836                                        |
| R28            | 1.0626                    | 1.1365            | 36.5393                                        | R63         | 0.0672                    | 0.0790        | 35.7446                                        |
| R29            | 0.5238                    | 0.8926            | 36.4017                                        | R64         | 0.0778                    | 0.1098        | 35.7754                                        |
| R30            | 0.6340                    | 0.7850            | 36.3475                                        | R65         | 0.1948                    | 0.3045        | 35.9701                                        |
| R31            | 0.2637                    | 0.4419            | 36.1352                                        | R66         | 0.1381                    | 0.2050        | 35.8706                                        |

|                |                           | MOD6 Co           | nstruction                                     | 4           |                           | MOD6 Con      | struction                                      |
|----------------|---------------------------|-------------------|------------------------------------------------|-------------|---------------------------|---------------|------------------------------------------------|
| Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+<br>background) | Receptor ID | MOD4<br>mine<br>increment | Mineincrement | Cumulative<br>(Incremental<br>+<br>background) |
| Criterion      | n/a                       | n/a               | 90                                             | Criterion   | n/a                       | n/a           | 90                                             |
| R32            | 0.2546                    | 0.3996            | 36.1125                                        | R67         | 0.1390                    | 0.2134        | 35.8790                                        |
| R33            | 0.2493                    | 0.4782            | 36.2029                                        | R68         | 0.1249                    | 0.1672        | 35.8328                                        |
| R34            | 0.3565                    | 0.4835            | 36.0797                                        | R69         | 0.1006                    | 0.1375        | 35.8032                                        |
| R35            | 0.3292                    | 0.5043            | 36.1196                                        | R70         | 0.0994                    | 0.1214        | 35.7870                                        |

#### MOD6 Construction and MOD4 scenarios – Predicted annual and maximum 24-hour average PM<sub>10</sub>

Table B.12: Predicted annualand maximum 24-hour average PM<sub>10</sub> concentration (µg/m<sup>3</sup>) for MOD6 construction scenario and MOD4 updated assessment

|                |                               | Annual Ave        | rage                                      | I                             | Maximum 24-       | hour                                             |                |                               | Annual Aver       | age                                         |                               | Maximum 24        | -hour                                        |
|----------------|-------------------------------|-------------------|-------------------------------------------|-------------------------------|-------------------|--------------------------------------------------|----------------|-------------------------------|-------------------|---------------------------------------------|-------------------------------|-------------------|----------------------------------------------|
|                |                               | MOD6 C            | Construction                              |                               | MOD6 Co           | onstruction                                      |                |                               | MOD6 Co           | onstruction                                 |                               | MOD6 C            | onstruction                                  |
| Receptor<br>ID | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>backgroun<br>d) | Receptor<br>ID | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background) |
| Criterion      | n/a                           | n/a               | 25                                        | n/a                           | n/a               | 50                                               | Criterion      | n/a                           | n/a               | 25                                          | n/a                           | n/a               | 50                                           |
| R1             | 0.3349                        | 0.4096            | 13.1019                                   | 2.5036                        | 3.9714            | 36.2266                                          | R36            | 0.2590                        | 0.3647            | 13.2269                                     | 1.6793                        | 3.3181            | 46.1091                                      |
| R2             | 0.3412                        | 0.4889            | 13.1841                                   | 2.3785                        | 5.0113            | 45.6532                                          | R37            | 0.2347                        | 0.3381            | 13.2244                                     | 1.6171                        | 3.2595            | 45.9132                                      |
| R3             | 0.5426                        | 0.7870            | 13.2931                                   | 3.9565                        | 5.4761            | 37.7194                                          | R38            | 0.1070                        | 0.1520            | 13.1532                                     | 1.2093                        | 1.4181            | 45.8523                                      |
| R4             | 0.3221                        | 0.4032            | 13.1109                                   | 3.4064                        | 3.5394            | 36.2878                                          | R39            | 0.1148                        | 0.1552            | 13.1483                                     | 1.2894                        | 1.6130            | 36.1501                                      |
| R5             | 0.2589                        | 0.3374            | 13.0956                                   | 3.1522                        | 3.6790            | 36.1502                                          | R40            | 0.2421                        | 0.3051            | 13.1802                                     | 2.3038                        | 3.8177            | 36.2426                                      |
| R6             | 0.2604                        | 0.2939            | 13.0497                                   | 2.1103                        | 3.6446            | 45.7244                                          | R41            | 0.2962                        | 0.3742            | 13.2009                                     | 2.7695                        | 3.2661            | 36.3640                                      |
| R7             | 0.1364                        | 0.1612            | 13.1323                                   | 1.4378                        | 1.8872            | 45.9018                                          | R42            | 0.3450                        | 0.4283            | 13.2119                                     | 3.1138                        | 3.6845            | 46.6449                                      |
| R8             | 0.2730                        | 0.3362            | 13.1792                                   | 1.9028                        | 2.9071            | 46.1378                                          | R43            | 0.1005                        | 0.4075            | 13.2618                                     | 1.1625                        | 5.9558            | 46.1719                                      |
| R9             | 0.2158                        | 0.2760            | 13.1755                                   | 1.9721                        | 2.7487            | 46.1564                                          | R44            | 0.0618                        | 0.0866            | 13.0285                                     | 0.7288                        | 1.1873            | 45.9381                                      |
| R10            | 0.2049                        | 0.2622            | 13.1725                                   | 1.8020                        | 2.5303            | 36.2577                                          | R45            | 0.1377                        | 0.1940            | 13.0556                                     | 0.9909                        | 2.1515            | 36.1304                                      |
| R11            | 0.1779                        | 0.2434            | 13.0777                                   | 2.0117                        | 2.4258            | 45.9563                                          | R46            | 0.0806                        | 0.1089            | 13.0291                                     | 1.1189                        | 1.1943            | 36.1164                                      |
| R12            | 0.1406                        | 0.1960            | 13.0660                                   | 1.0952                        | 1.9987            | 36.1214                                          | R47            | 0.1521                        | 0.2070            | 13.1619                                     | 0.9938                        | 1.7729            | 46.2302                                      |
| R13            | 0.1204                        | 0.1682            | 13.0568                                   | 0.8927                        | 1.9909            | 45.9118                                          | R48            | 0.0708                        | 0.0971            | 13.1340                                     | 0.6911                        | 1.9592            | 45.6906                                      |
| R14            | 0.1327                        | 0.1686            | 13.1440                                   | 1.1371                        | 2.2090            | 36.1626                                          | R49            | 0.0402                        | 0.0549            | 13.1173                                     | 0.4416                        | 1.2717            | 45.7229                                      |
| R15            | 0.0560                        | 0.0729            | 13.1210                                   | 0.6067                        | 0.8416            | 36.1606                                          | R50            | 0.1862                        | 0.2575            | 13.1409                                     | 1.3267                        | 2.1375            | 46.0605                                      |
| R16            | 0.0629                        | 0.0846            | 13.1279                                   | 0.6375                        | 1.2981            | 36.2271                                          | R51            | 0.1350                        | 0.1681            | 13.0515                                     | 1.3717                        | 1.4123            | 45.9724                                      |
| R17            | 0.1113                        | 0.1446            | 13.1406                                   | 1.0064                        | 2.8473            | 36.2171                                          | R52            | 0.1479                        | 0.1858            | 13.0692                                     | 1.4466                        | 1.5442            | 45.9908                                      |

|                |                               | Annual Ave        | rage                                      | l r                           | Maximum 24-l      | hour                                             |                |                               | Annual Average    |                                             |                               | Maximum 24-hour   |                                              |  |
|----------------|-------------------------------|-------------------|-------------------------------------------|-------------------------------|-------------------|--------------------------------------------------|----------------|-------------------------------|-------------------|---------------------------------------------|-------------------------------|-------------------|----------------------------------------------|--|
|                |                               | MOD6 C            | Construction                              |                               | MOD6 Co           | onstruction                                      | 1              |                               | MOD6 Co           | onstruction                                 |                               | MOD6 C            | onstruction                                  |  |
| Receptor<br>ID | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>backgroun<br>d) | Receptor<br>ID | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background | MOD4<br>mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background) |  |
| Criterion      | n/a                           | n/a               | 25                                        | n/a                           | n/a               | 50                                               | Criterion      | n/a                           | n/a               | 25                                          | n/a                           | n/a               | 50                                           |  |
| R18            | 0.1016                        | 0.1393            | 13.0441                                   | 1.6091                        | 1.6109            | 36.1260                                          | R53            | 0.0961                        | 0.1316            | 12.9150                                     | 1.5200                        | 1.5187            | 36.1213                                      |  |
| R19            | 0.0449                        | 0.0608            | 13.1197                                   | 0.6414                        | 1.1648            | 36.1880                                          | R54            | 0.0946                        | 0.1197            | 13.0032                                     | 1.0365                        | 1.3659            | 45.8791                                      |  |
| R20            | 0.0481                        | 0.0632            | 13.1189                                   | 0.5208                        | 0.6551            | 45.7429                                          | R55            | 0.0440                        | 0.0596            | 12.8431                                     | 0.7158                        | 1.1782            | 36.1210                                      |  |
| R21            | 0.3741                        | 0.4669            | 13.1196                                   | 2.6784                        | 4.9930            | 45.8224                                          | R56            | 0.0498                        | 0.0654            | 12.9488                                     | 0.7926                        | 0.7907            | 45.7086                                      |  |
| R22            | 0.3772                        | 0.4765            | 13.1247                                   | 2.4515                        | 4.6823            | 45.7377                                          | R57            | 0.0830                        | 0.1088            | 12.8922                                     | 0.8436                        | 1.7776            | 36.1257                                      |  |
| R23            | 0.3770                        | 0.5003            | 13.1474                                   | 2.5068                        | 6.0248            | 36.1815                                          | R58            | 0.0440                        | 0.0579            | 12.9413                                     | 0.4247                        | 1.1149            | 45.7823                                      |  |
| R24            | 0.3637                        | 0.5322            | 13.1929                                   | 2.5112                        | 6.9595            | 45.8799                                          | R59            | 0.0237                        | 0.0327            | 12.8162                                     | 0.2339                        | 0.5262            | 36.1177                                      |  |
| R25            | 0.2584                        | 0.3158            | 13.0747                                   | 1.8364                        | 4.3057            | 45.8573                                          | R60            | 0.0897                        | 0.1241            | 13.0075                                     | 0.7321                        | 2.5143            | 45.7781                                      |  |
| R26            | 0.3826                        | 0.6322            | 13.2759                                   | 2.4264                        | 13.0068           | 45.9275                                          | R61            | 0.0443                        | 0.0614            | 12.8449                                     | 0.6946                        | 0.7752            | 36.1197                                      |  |
| R27            | 0.6583                        | 0.8857            | 13.4650                                   | 7.7474                        | 14.2086           | 46.5502                                          | R62            | 0.0790                        | 0.1135            | 12.8970                                     | 0.8913                        | 1.3336            | 36.1235                                      |  |
| R28            | 0.6496                        | 0.7863            | 13.4293                                   | 6.0291                        | 11.4778           | 46.0329                                          | R63            | 0.0650                        | 0.0797            | 12.9631                                     | 0.6227                        | 1.5517            | 45.8072                                      |  |
| R29            | 0.4154                        | 0.6087            | 13.3563                                   | 2.3024                        | 9.1361            | 46.1555                                          | R64            | 0.0720                        | 0.0959            | 12.9794                                     | 0.7813                        | 1.4804            | 45.7003                                      |  |
| R30            | 0.4333                        | 0.5475            | 13.3232                                   | 3.1442                        | 8.6385            | 46.0763                                          | R65            | 0.1645                        | 0.2220            | 13.1054                                     | 1.0405                        | 3.4302            | 45.8356                                      |  |
| R31            | 0.2194                        | 0.3061            | 13.2174                                   | 2.3688                        | 4.6659            | 45.9667                                          | R66            | 0.1118                        | 0.1574            | 13.0409                                     | 0.8916                        | 2.6013            | 45.8200                                      |  |
| R32            | 0.2101                        | 0.2818            | 13.2043                                   | 1.3199                        | 4.0929            | 46.1438                                          | R67            | 0.1178                        | 0.1657            | 13.0491                                     | 0.9968                        | 3.3467            | 45.8121                                      |  |
| R33            | 0.2596                        | 0.3378            | 13.2166                                   | 2.8243                        | 3.8528            | 45.9891                                          | R68            | 0.1108                        | 0.1481            | 12.9316                                     | 0.9798                        | 1.7092            | 36.1294                                      |  |
| R34            | 0.3189                        | 0.4042            | 13.2106                                   | 2.5495                        | 4.8148            | 36.6896                                          | R69            | 0.0869                        | 0.1163            | 12.8998                                     | 0.9875                        | 1.2352            | 36.1268                                      |  |
| R35            | 0.2837                        | 0.3882            | 13.2266                                   | 1.7486                        | 10.3788           | 45.9982                                          | R70            | 0.0844                        | 0.1189            | 12.9024                                     | 0.7394                        | 1.4303            | 36.1242                                      |  |

#### MOD6 Construction and MOD4 scenarios – Predicted annual and maximum 24-hour average PM<sub>2.5</sub>

Table B.13: Predicted annual and maximum 24-hour average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario and MOD4 updated assessment

|                |                       | Annual Av         | erage                                     |                       | Maximum 24-       | -hour                                     |                 |                       | Annual Ave        | rage                                      |                       | Maximum 24        | 1-hour                                       |
|----------------|-----------------------|-------------------|-------------------------------------------|-----------------------|-------------------|-------------------------------------------|-----------------|-----------------------|-------------------|-------------------------------------------|-----------------------|-------------------|----------------------------------------------|
| -              | MOD4                  | MOD6              | Construction                              | MOD4                  | MOD6 C            | onstruction                               |                 | MOD4                  | MOD6 C            | onstruction                               | MOD4                  | MOD6 C            | onstruction                                  |
| Receptor<br>ID | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | Recepto<br>r ID | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | mine<br>incre<br>ment | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background) |
| Criterion      | n/a                   | n/a               | 8                                         | n/a                   | n/a               | 25                                        | Criterio<br>n   | n/a                   | n/a               | 8                                         | n/a                   | n/a               | 25                                           |
| R1             | 0.0720                | 0.1296            | 5.3630                                    | 0.6746                | 1.3135            | 14.8029                                   | R36             | 0.4451                | 0.1196            | 5.4136                                    | 0.4321                | 1.3594            | 18.9387                                      |
| R2             | 0.0774                | 0.1448            | 5.3731                                    | 0.5123                | 1.6863            | 15.0324                                   | R37             | 0.4343                | 0.1093            | 5.4096                                    | 0.4198                | 1.1631            | 18.9506                                      |
| R3             | 0.1256                | 0.2413            | 5.4221                                    | 1.1291                | 2.4932            | 14.9888                                   | R38             | 0.2312                | 0.0457            | 5.3710                                    | 0.2311                | 0.4458            | 18.8010                                      |
| R4             | 0.0760                | 0.1232            | 5.3516                                    | 0.7932                | 1.1525            | 14.7841                                   | R39             | 0.3195                | 0.0474            | 5.3707                                    | 0.3193                | 0.4974            | 18.7972                                      |
| R5             | 0.0626                | 0.1022            | 5.3423                                    | 0.7944                | 1.2268            | 14.7818                                   | R40             | 0.6496                | 0.0956            | 5.3876                                    | 0.6322                | 1.1972            | 18.8735                                      |
| R6             | 0.0628                | 0.0872            | 5.3271                                    | 0.5728                | 1.3916            | 14.7798                                   | R41             | 0.7942                | 0.1193            | 5.3990                                    | 0.7798                | 1.3210            | 18.8599                                      |
| R7             | 0.0342                | 0.0525            | 5.3697                                    | 0.4039                | 0.6183            | 18.7877                                   | R42             | 0.9840                | 0.1372            | 5.4049                                    | 0.9705                | 1.3323            | 18.8553                                      |
| R8             | 0.0679                | 0.1015            | 5.3861                                    | 0.5219                | 1.1864            | 18.7770                                   | R43             | 1.6632                | 0.1260            | 5.4209                                    | 0.2723                | 1.7223            | 18.8363                                      |
| R9             | 0.0544                | 0.0860            | 5.3841                                    | 0.5650                | 0.8257            | 18.8345                                   | R44             | 0.1420                | 0.0289            | 5.3137                                    | 0.2660                | 0.3821            | 14.7820                                      |
| R10            | 0.0515                | 0.0852            | 5.3864                                    | 0.5674                | 1.0400            | 18.8471                                   | R45             | 0.2856                | 0.0627            | 5.3275                                    | 0.3790                | 0.6854            | 14.7827                                      |
| R11            | 0.0430                | 0.0749            | 5.3340                                    | 0.4763                | 0.8486            | 14.7823                                   | R46             | 0.3360                | 0.0346            | 5.3141                                    | 0.3867                | 0.4556            | 14.7817                                      |
| R12            | 0.0351                | 0.0634            | 5.3303                                    | 0.3255                | 0.6407            | 14.7831                                   | R47             | 0.3350                | 0.0698            | 5.3828                                    | 0.3692                | 0.7454            | 18.8777                                      |
| R13            | 0.0303                | 0.0548            | 5.3263                                    | 0.2669                | 0.6389            | 14.7828                                   | R48             | 0.1266                | 0.0320            | 5.3662                                    | 1.5781                | 0.5966            | 18.8107                                      |
| R14            | 0.0344                | 0.0578            | 5.3749                                    | 0.3756                | 0.8343            | 18.8337                                   | R49             | 0.0781                | 0.0184            | 5.3587                                    | 1.5178                | 0.3730            | 18.8070                                      |
| R15            | 0.0152                | 0.0260            | 5.3621                                    | 0.2006                | 0.3652            | 18.8296                                   | R50             | 0.6314                | 0.0856            | 5.3842                                    | 0.6314                | 0.9153            | 18.9271                                      |
| R16            | 0.0161                | 0.0282            | 5.3640                                    | 0.1413                | 0.4158            | 18.8086                                   | R51             | 1.2090                | 0.0554            | 5.3540                                    | 1.2090                | 0.6611            | 18.8852                                      |
| R17            | 0.0294                | 0.0498            | 5.3722                                    | 0.3185                | 0.8792            | 18.8315                                   | R52             | 0.9466                | 0.0607            | 5.3593                                    | 0.9466                | 0.7144            | 18.8917                                      |

|                |                       | Annual Av         | erage                                     |                       | Maximum 24        | -hour                                     |                 |                       | Annual Ave        | rage                                      |                       | Maximum 24        | -hour                                        |
|----------------|-----------------------|-------------------|-------------------------------------------|-----------------------|-------------------|-------------------------------------------|-----------------|-----------------------|-------------------|-------------------------------------------|-----------------------|-------------------|----------------------------------------------|
| _              | MOD4                  | MOD6              | Construction                              | MOD4                  | MOD6 C            | onstruction                               | 1_              | MOD4                  | MOD6 C            | onstruction                               | MOD4                  | MOD6 C            | onstruction                                  |
| Receptor<br>ID | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | Recepto<br>r ID | mine<br>increme<br>nt | Mine<br>increment | Cumulative<br>(Increment +<br>background) | mine<br>incre<br>ment | Mine<br>increment | Cumulative<br>(Increment<br>+<br>background) |
| Criterion      | n/a                   | n/a               | 8                                         | n/a                   | n/a               | 25                                        | Criterio<br>n   | n/a                   | n/a               | 8                                         | n/a                   | n/a               | 25                                           |
| R18            | 0.0255                | 0.0438            | 5.3196                                    | 0.4210                | 0.5640            | 14.7819                                   | R53             | 0.3863                | 0.0415            | 5.2901                                    | 0.3863                | 0.5335            | 14.7822                                      |
| R19            | 0.0116                | 0.0201            | 5.3597                                    | 0.1167                | 0.3430            | 18.8058                                   | R54             | 0.8305                | 0.0426            | 5.3412                                    | 0.8305                | 0.5802            | 18.8634                                      |
| R20            | 0.0131                | 0.0228            | 5.3608                                    | 0.1804                | 0.2847            | 18.8230                                   | R55             | 0.2114                | 0.0208            | 5.2694                                    | 0.2114                | 0.3618            | 14.7821                                      |
| R21            | 0.0795                | 0.1524            | 5.3788                                    | 0.5408                | 1.4299            | 14.8480                                   | R56             | 0.2126                | 0.0229            | 5.3215                                    | 0.2126                | 0.2922            | 18.8054                                      |
| R22            | 0.0811                | 0.1585            | 5.3835                                    | 0.5336                | 1.6070            | 14.8668                                   | R57             | 0.3013                | 0.0367            | 5.2854                                    | 0.3013                | 0.5149            | 14.7840                                      |
| R23            | 0.0827                | 0.1695            | 5.3936                                    | 0.4621                | 1.9412            | 15.0304                                   | R58             | 0.2888                | 0.0208            | 5.3194                                    | 0.2888                | 0.3301            | 18.8313                                      |
| R24            | 0.0840                | 0.1811            | 5.4046                                    | 0.4685                | 2.5429            | 15.2048                                   | R59             | 0.1011                | 0.0111            | 5.2597                                    | 0.1011                | 0.1916            | 14.7808                                      |
| R25            | 0.0579                | 0.1083            | 5.3546                                    | 0.5335                | 1.3013            | 14.8826                                   | R60             | 0.1942                | 0.0405            | 5.3392                                    | 0.1942                | 0.7637            | 18.8230                                      |
| R26            | 0.0997                | 0.2322            | 5.4412                                    | 0.5946                | 3.7679            | 14.9068                                   | R61             | 0.1985                | 0.0200            | 5.2686                                    | 0.1985                | 0.2585            | 14.7816                                      |
| R27            | 0.1735                | 0.2583            | 5.4914                                    | 1.6473                | 4.0044            | 18.8724                                   | R62             | 0.1854                | 0.0353            | 5.2839                                    | 0.1854                | 0.3897            | 14.7831                                      |
| R28            | 0.1806                | 0.2308            | 5.4823                                    | 1.5429                | 3.2632            | 18.8641                                   | R63             | 0.2244                | 0.0280            | 5.3266                                    | 0.2244                | 0.5568            | 18.8355                                      |
| R29            | 0.1059                | 0.1853            | 5.4536                                    | 0.7889                | 2.8169            | 18.8435                                   | R64             | 0.1452                | 0.0311            | 5.3297                                    | 0.1452                | 0.4319            | 18.7994                                      |
| R30            | 0.1186                | 0.1653            | 5.4443                                    | 1.2399                | 2.5114            | 18.8454                                   | R65             | 0.2242                | 0.0719            | 5.3705                                    | 0.2242                | 1.0312            | 18.8378                                      |
| R31            | 0.0555                | 0.0980            | 5.4042                                    | 0.9819                | 1.3411            | 18.8255                                   | R66             | 0.2146                | 0.0513            | 5.3499                                    | 0.2146                | 0.8005            | 18.8388                                      |
| R32            | 0.0533                | 0.0896            | 5.3996                                    | 0.5021                | 1.1986            | 18.8276                                   | R67             | 0.2381                | 0.0537            | 5.3524                                    | 0.2381                | 1.0128            | 18.8353                                      |
| R33            | 0.0556                | 0.1004            | 5.4124                                    | 0.9369                | 1.1846            | 18.8094                                   | R68             | 0.2067                | 0.0496            | 5.2983                                    | 0.2067                | 0.4998            | 14.8689                                      |
| R34            | 0.0802                | 0.1331            | 5.4073                                    | 0.8168                | 1.9079            | 18.8609                                   | R69             | 0.1642                | 0.0400            | 5.2886                                    | 0.1642                | 0.4654            | 14.8819                                      |
| R35            | 0.0684                | 0.1253            | 5.4113                                    | 0.4657                | 3.0729            | 18.8580                                   | R70             | 0.1764                | 0.0394            | 5.2881                                    | 0.1764                | 0.4095            | 14.7833                                      |

#### MOD6 Construction and MOD4 scenarios - Monthly average deposited dust

|                |                           | MOD6 C            | onstruction                                |                |                           | MOD6 C            | onstruction                                |
|----------------|---------------------------|-------------------|--------------------------------------------|----------------|---------------------------|-------------------|--------------------------------------------|
| Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+background) | Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+background) |
| Criterion      | 2                         | 2                 | 4                                          | Criterion      | 2                         | 2                 | 4                                          |
| R1             | 0.0903                    | 0.1205            | 1.1740                                     | R36            | 0.0670                    | 0.1134            | 0.4973                                     |
| R2             | 0.1141                    | 0.1397            | 1.1880                                     | R37            | 0.0603                    | 0.1120            | 0.5023                                     |
| R3             | 0.1970                    | 0.2761            | 1.2769                                     | R38            | 0.0249                    | 0.0269            | 0.8222                                     |
| R4             | 0.1079                    | 0.0989            | 1.1472                                     | R39            | 0.0262                    | 0.0284            | 0.8217                                     |
| R5             | 0.0757                    | 0.0700            | 1.1302                                     | R40            | 0.0681                    | 0.0713            | 0.4533                                     |
| R6             | 0.0734                    | 0.0614            | 1.1213                                     | R41            | 0.0856                    | 0.0905            | 0.4602                                     |
| R7             | 0.0295                    | 0.0315            | 0.8187                                     | R42            | 0.1048                    | 0.1170            | 0.4748                                     |
| R8             | 0.0767                    | 0.0749            | 0.8295                                     | R43            | 0.0285                    | 0.1360            | 3.2810                                     |
| R9             | 0.0566                    | 0.0610            | 0.4492                                     | R44            | 0.0148                    | 0.0172            | 0.9020                                     |
| R10            | 0.0563                    | 0.0616            | 0.4527                                     | R45            | 0.0359                    | 0.0408            | 0.9056                                     |
| R11            | 0.0475                    | 0.0489            | 1.1281                                     | R46            | 0.0166                    | 0.0181            | 0.8976                                     |
| R12            | 0.0362                    | 0.0407            | 0.9076                                     | R47            | 0.0420                    | 0.0601            | 0.4631                                     |
| R13            | 0.0303                    | 0.0346            | 0.9061                                     | R48            | 0.0184                    | 0.0256            | 0.4498                                     |
| R14            | 0.0334                    | 0.0382            | 0.4453                                     | R49            | 0.0096                    | 0.0129            | 0.4432                                     |
| R15            | 0.0127                    | 0.0162            | 0.4422                                     | R50            | 0.0525                    | 0.0780            | 3.2266                                     |
| R16            | 0.0160                    | 0.0217            | 0.4475                                     | R51            | 0.0333                    | 0.0361            | 0.4248                                     |
| R17            | 0.0279                    | 0.0350            | 0.4474                                     | R52            | 0.0372                    | 0.0398            | 0.4284                                     |
| R18            | 0.0224                    | 0.0241            | 0.8999                                     | R53            | 0.0209                    | 0.0226            | 0.8712                                     |
| R19            | 0.0107                    | 0.0142            | 0.4438                                     | R54            | 0.0228                    | 0.0292            | 3.1779                                     |
| R20            | 0.0107                    | 0.0139            | 0.4418                                     | R55            | 0.0076                    | 0.0090            | 0.3977                                     |
| R21            | 0.0916                    | 0.1393            | 1.1857                                     | R56            | 0.0089                    | 0.0099            | 0.3985                                     |
| R22            | 0.0904                    | 0.1446            | 1.1895                                     | R57            | 0.0161                    | 0.0184            | 0.4071                                     |
| R23            | 0.0951                    | 0.1662            | 1.2103                                     | R58            | 0.0084                    | 0.0103            | 0.3989                                     |
| R24            | 0.1050                    | 0.1877            | 1.2312                                     | R59            | 0.0042                    | 0.0050            | 0.8536                                     |
| R25            | 0.0606                    | 0.0952            | 1.1615                                     | R60            | 0.0243                    | 0.0351            | 3.1837                                     |
| R26            | 0.1330                    | 0.2227            | 1.2518                                     | R61            | 0.0087                    | 0.0098            | 0.7784                                     |
| R27            | 0.3199                    | 0.2939            | 3.3771                                     | R62            | 0.0175                    | 0.0192            | 0.7878                                     |
| R28            | 0.3308                    | 0.2455            | 3.3470                                     | R63            | 0.0126                    | 0.0141            | 0.7827                                     |
| R29            | 0.1597                    | 0.2093            | 3.3276                                     | R64            | 0.0200                    | 0.0248            | 1.6334                                     |
| R30            | 0.2035                    | 0.1734            | 3.3024                                     | R65            | 0.0506                    | 0.0713            | 3.2200                                     |
| R31            | 0.0683                    | 0.1055            | 3.2617                                     | R66            | 0.0309                    | 0.0465            | 3.1951                                     |

Table B.14: Predicted incremental and cumulative monthly average deposited dust (g/m<sup>2</sup>/month) for MOD6 construction scenario and MOD4 updated assessment

|                | MODI                      | MOD6 C            | onstruction                                | _              | MODI                      | MOD6 Co           | onstruction                                |
|----------------|---------------------------|-------------------|--------------------------------------------|----------------|---------------------------|-------------------|--------------------------------------------|
| Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+background) | Receptor<br>ID | MOD4<br>mine<br>increment | Mine<br>increment | Cumulative<br>(Incremental<br>+background) |
| Criterion      | 2                         | 2                 | 4                                          | Criterion      | 2                         | 2                 | 4                                          |
| R32            | 0.0707                    | 0.0933            | 3.2533                                     | R67            | 0.0324                    | 0.0492            | 3.1978                                     |
| R33            | 0.0756                    | 0.1069            | 1.7289                                     | R68            | 0.0303                    | 0.0383            | 0.8870                                     |
| R34            | 0.0952                    | 0.1195            | 0.4837                                     | R69            | 0.0241                    | 0.0315            | 0.8802                                     |
| R35            | 0.0805                    | 0.1163            | 0.4922                                     | R70            | 0.0207                    | 0.0241            | 0.8727                                     |

#### Cumulative impacts associated with the Broken Hill North Mine

Table B.15: Predicted cumulative (in combination with Broken Hill North Mine) annual average  $PM_{10}$ and  $PM_{2.5}$  concentrations ( $\mu$ g/m<sup>3</sup>)

|                                                           |                     | MOD6 Construc                          | tion                                                              | MOD6 Operational  |                                        |                                                                      |  |  |
|-----------------------------------------------------------|---------------------|----------------------------------------|-------------------------------------------------------------------|-------------------|----------------------------------------|----------------------------------------------------------------------|--|--|
| Receptor ID<br>(Broken Hill<br>North Mine<br>Receptor ID) | MOD6<br>Increment   | Broken Hill<br>North Mine<br>Increment | Cumulativ e (MOD6<br>+ Broken Hill<br>North Mine +<br>background) | MOD6<br>Increment | Broken Hill<br>North Mine<br>Increment | Cumulativ e<br>(MOD6 +<br>Broken Hill<br>North Mine +<br>background) |  |  |
| Annual average                                            | e PM <sub>10</sub>  |                                        |                                                                   |                   |                                        |                                                                      |  |  |
| Criterion                                                 | n/a                 | n/a                                    | 25                                                                | n/a               | n/a                                    | 25                                                                   |  |  |
| R2 (R38)                                                  | 0.4889              | 0.1                                    | 13.2841                                                           | 0.4254            | 0.1                                    | 13.2206                                                              |  |  |
| R11 (R34)                                                 | 0.1089              | 0.1                                    | 13.1777                                                           | 0.2025            | 0.1                                    | 13.1368                                                              |  |  |
| R17 (R28)                                                 | 0.1446              | 0                                      | 13.1406                                                           | 0.1189            | 0                                      | 13.1149                                                              |  |  |
| R18 (R30)                                                 | 0.1393              | 0.1                                    | 13.1441                                                           | 0.1133            | 0.1                                    | 13.1181                                                              |  |  |
| R23 (R15)                                                 | 0.5003              | 0.1                                    | 13.2474                                                           | 0.4096            | 0.1                                    | 13.1567                                                              |  |  |
| R24 (R14)                                                 | 0.5322              | 0.1                                    | 13.2929                                                           | 0.4332            | 0.1                                    | 13.1939                                                              |  |  |
| R32 (R12)                                                 | 0.2818              | 0.1                                    | 13.3043                                                           | 0.2564            | 0.1                                    | 13.279                                                               |  |  |
| R43 (R13)                                                 | 0.4075              | 0.1                                    | 13.3618                                                           | 0.391             | 0.1                                    | 13.3453                                                              |  |  |
| Annual average                                            | e PM <sub>2.5</sub> | -                                      | · · · ·                                                           |                   |                                        | -                                                                    |  |  |
| Criterion                                                 | n/a                 | n/a                                    | 8                                                                 | n/a               | n/a                                    | 8                                                                    |  |  |
| R2 (R38)                                                  | 0.1448              | 0.1                                    | 5.4731                                                            | 0.1351            | 0.1                                    | 5.4634                                                               |  |  |
| R11 (R34)                                                 | 0.0749              | 0.1                                    | 5.434                                                             | 0.0686            | 0.1                                    | 5.4277                                                               |  |  |
| R17 (R28)                                                 | 0.0498              | 0                                      | 5.3722                                                            | 0.044             | 0                                      | 5.3664                                                               |  |  |
| R18 (R30)                                                 | 0.0438              | 0.1                                    | 5.4196                                                            | 0.0399            | 0.1                                    | 5.4156                                                               |  |  |
| R23 (R15)                                                 | 0.1695              | 0.1                                    | 5.4936                                                            | 0.1522            | 0.1                                    | 5.4763                                                               |  |  |
| R24 (R14)                                                 | 0.1811              | 0.2                                    | 5.6046                                                            | 0.1639            | 0.2                                    | 5.5874                                                               |  |  |
| R32 (R12)                                                 | 0.0896              | 0.1                                    | 5.4996                                                            | 0.0837            | 0.1                                    | 5.4937                                                               |  |  |
| R43 (R13)                                                 | 0.126               | 0.1                                    | 5.5209                                                            | 0.1223            | 0.1                                    | 5.5173                                                               |  |  |

### Table B.16: Predicted cumulative (in combination with Broken Hill North Mine) maximum 24-hour $PM_{10}$ and $PM_{2.5}$ concentrations (µg/m<sup>3</sup>)

| DeserterID                                                   |                   | MOD6 Construc                          | tion                                                             | I                 | MOD6 Operation                         | nal                                                                 |
|--------------------------------------------------------------|-------------------|----------------------------------------|------------------------------------------------------------------|-------------------|----------------------------------------|---------------------------------------------------------------------|
| Receptor ID<br>(Broken Hill<br>North Mine<br>Receptor<br>ID) | MOD6<br>Increment | Broken Hill<br>North Mine<br>Increment | Cumulative (MOD6<br>+ Broken Hill<br>North Mine +<br>background) | MOD6<br>Increment | Broken Hill<br>North Mine<br>Increment | Cumulative<br>(MOD6 +<br>Broken Hill<br>North Mine +<br>background) |
| Maximum 24                                                   | 1-hour average    | PM 10                                  |                                                                  |                   |                                        |                                                                     |
| Criterion                                                    | n/a               | n/a                                    | 50                                                               | n/a               | n/a                                    | 50                                                                  |
| R2 (R38)                                                     | 5.0113            | 1.8000                                 | 47.4532                                                          | 4.5000            | 1.8000                                 | 47.4469                                                             |
| R11 (R34)                                                    | 2.4258            | 0.6000                                 | 46.5563                                                          | 1.8822            | 0.6000                                 | 46.5545                                                             |
| R17 (R28)                                                    | 2.8473            | 0.4000                                 | 36.6171                                                          | 1.1059            | 0.4000                                 | 36.6059                                                             |
| R18 (R30)                                                    | 1.6109            | 0.4000                                 | 36.5260                                                          | 1.3058            | 0.4000                                 | 36.5249                                                             |
| R23 (R15)                                                    | 6.0248            | 1.0000                                 | 37.1815                                                          | 2.3419            | 1.0000                                 | 37.1084                                                             |
| R24 (R14)                                                    | 6.9595            | 0.7000                                 | 46.5799                                                          | 2.5759            | 0.7000                                 | 46.5639                                                             |
| R32 (R12)                                                    | 4.0929            | 0.8000                                 | 46.9438                                                          | 1.7952            | 0.8000                                 | 46.9955                                                             |
| R43 (R13)                                                    | 5.9558            | 3.2000                                 | 49.3719                                                          | 2.4865            | 3.2000                                 | 49.4735                                                             |
| Maximum 24                                                   | 1-hour average    | PM 2.5                                 |                                                                  |                   |                                        |                                                                     |
| Criterion                                                    | n/a               | n/a                                    | 25                                                               | n/a               | n/a                                    | 25                                                                  |
| R2 (R38)                                                     | 1.6863            | 4.7000                                 | 19.7324                                                          | 1.0622            | 4.7000                                 | 19.4844                                                             |
| R11 (R34)                                                    | 0.8486            | 2.9000                                 | 17.6823                                                          | 0.6090            | 2.9000                                 | 17.6812                                                             |
| R17 (R28)                                                    | 0.8792            | 0.9000                                 | 19.7315                                                          | 0.4166            | 0.9000                                 | 19.7146                                                             |
| R18 (R30)                                                    | 0.5640            | 2.1000                                 | 16.8819                                                          | 0.4873            | 2.1000                                 | 16.8814                                                             |
| R23 (R15)                                                    | 1.9412            | 6.1000                                 | 21.1304                                                          | 0.8885            | 6.1000                                 | 20.8840                                                             |
| R24 (R14)                                                    | 2.5429            | 6.9000                                 | 22.1048                                                          | 1.0350            | 6.9000                                 | 21.6843                                                             |
| R32 (R12)                                                    | 1.1986            | 2.1000                                 | 20.9276                                                          | 0.5888            | 2.1000                                 | 20.9366                                                             |
| R43 (R13)                                                    | 1.7223            | 3.4000                                 | 22.2363                                                          | 0.8318            | 3.4000                                 | 22.2537                                                             |

### Table B.17: Predicted cumulative (in combination with Broken Hill North Mine) annual average TSP, dust deposition and lead concentrations

|              | Co                | onstruction year (2                    | 021)                                                                | Future            | e operational year                     | r (2026)                                                            |
|--------------|-------------------|----------------------------------------|---------------------------------------------------------------------|-------------------|----------------------------------------|---------------------------------------------------------------------|
| Receptor ID  | MOD6<br>Increment | Broken Hill<br>North Mine<br>Increment | Cumulative<br>(MOD6 +<br>Broken Hill<br>North Mine +<br>background) | MOD6<br>Increment | Broken Hill<br>North Mine<br>Increment | Cumulative<br>(MOD6 +<br>Broken Hill<br>North Mine +<br>background) |
| Annual avera | ge TSP (µg/m³)    | 1                                      |                                                                     |                   |                                        | 1                                                                   |
| Criterion    | n/a               | n/a                                    | 90                                                                  | n/a               | n/a                                    | 90                                                                  |
| R2 (R38)     | 0.5882            | 0.0000                                 | 35.5395                                                             | 0.6711            | 0.0000                                 | 35.5395                                                             |
| R11 (R34)    | 0.2513            | 0.0000                                 | 35.7043                                                             | 0.2603            | 0.0000                                 | 35.7043                                                             |
| R17 (R28)    | 0.1647            | 0.0000                                 | 35.7891                                                             | 0.1569            | 0.0000                                 | 35.7891                                                             |
| R18 (R30)    | 0.1343            | 0.0000                                 | 35.7892                                                             | 0.1335            | 0.0000                                 | 35.7892                                                             |
| R23 (R15)    | 0.7351            | 0.1000                                 | 35.6756                                                             | 0.6507            | 0.1000                                 | 35.6756                                                             |
| R24 (R14)    | 0.8148            | 0.1000                                 | 35.6576                                                             | 0.7014            | 0.1000                                 | 35.6576                                                             |
| R32 (R12)    | 0.3996            | 0.1000                                 | 35.8129                                                             | 0.4066            | 0.1000                                 | 35.8129                                                             |
| R43 (R13)    | 0.5870            | 0.1000                                 | 35.7429                                                             | 0.6386            | 0.1000                                 | 35.7429                                                             |
| Monthly dust | deposition (g/ı   | m²/month)                              |                                                                     |                   |                                        |                                                                     |
| Criterion    | 2                 | 2                                      | 4                                                                   | 2                 | 2                                      | 4                                                                   |
| R2 (R38)     | 0.1397            | 0.0000                                 | 1.0483                                                              | 0.1640            | 0.0000                                 | 1.0483                                                              |
| R11 (R34)    | 0.0489            | 0.0000                                 | 1.0792                                                              | 0.0526            | 0.0000                                 | 1.0792                                                              |
| R17 (R28)    | 0.0350            | 0.0000                                 | 0.4124                                                              | 0.0352            | 0.0000                                 | 0.4124                                                              |
| R18 (R30)    | 0.0241            | 0.0000                                 | 0.8758                                                              | 0.0250            | 0.0000                                 | 0.8758                                                              |
| R23 (R15)    | 0.1662            | 0.0000                                 | 1.0441                                                              | 0.1489            | 0.0000                                 | 1.0441                                                              |
| R24 (R14)    | 0.1877            | 0.0000                                 | 1.0435                                                              | 0.1635            | 0.0000                                 | 1.0435                                                              |
| R32 (R12)    | 0.0933            | 0.0000                                 | 3.1600                                                              | 0.1033            | 0.0000                                 | 3.1600                                                              |
| R43 (R13)    | 0.1360            | 0.0000                                 | 3.1450                                                              | 0.1673            | 0.0000                                 | 3.1450                                                              |
| Annual avera | ge lead concer    | tration (µg/m³)                        |                                                                     |                   |                                        | -                                                                   |
| Criterion    | n/a               | n/a                                    | 0.5                                                                 | n/a               | n/a                                    | 0.5                                                                 |
| R2 (R38)     | 0.008             | 0.006                                  | 0.227                                                               | 0.009             | 0.006                                  | 0.227                                                               |
| R11 (R34)    | 0.004             | 0.006                                  | 0.231                                                               | 0.004             | 0.006                                  | 0.231                                                               |
| R17 (R28)    | 0.003             | 0.006                                  | 0.233                                                               | 0.003             | 0.006                                  | 0.233                                                               |
| R18 (R30)    | 0.003             | 0.006                                  | 0.233                                                               | 0.003             | 0.006                                  | 0.233                                                               |
| R23 (R15)    | 0.013             | 0.006                                  | 0.229                                                               | 0.012             | 0.006                                  | 0.229                                                               |
| R24 (R14)    | 0.014             | 0.006                                  | 0.228                                                               | 0.013             | 0.006                                  | 0.228                                                               |
| R32 (R12)    | 0.007             | 0.006                                  | 0.231                                                               | 0.007             | 0.006                                  | 0.231                                                               |
| R43 (R13)    | 0.010             | 0.006                                  | 0.230                                                               | 0.010             | 0.006                                  | 0.230                                                               |

#### APPENDIX C MOD4 RESULTS

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 0.0012                                                          | 0.0080                                                                                  | R36            | 0.0006                                                          | 0.0072                                                                                   |
| R2             | 0.0018                                                          | 0.0106                                                                                  | R37            | 0.0006                                                          | 0.0062                                                                                   |
| R3             | 0.0028                                                          | 0.0187                                                                                  | R38            | 0.0003                                                          | 0.0034                                                                                   |
| R4             | 0.0015                                                          | 0.0103                                                                                  | R39            | 0.0003                                                          | 0.0036                                                                                   |
| R5             | 0.0008                                                          | 0.0082                                                                                  | R40            | 0.0008                                                          | 0.0069                                                                                   |
| R6             | 0.0007                                                          | 0.0089                                                                                  | R41            | 0.0009                                                          | 0.0085                                                                                   |
| R7             | 0.0003                                                          | 0.0038                                                                                  | R42            | 0.0011                                                          | 0.0094                                                                                   |
| R8             | 0.0007                                                          | 0.0083                                                                                  | R43            | -                                                               | 0.0063                                                                                   |
| R9             | 0.0006                                                          | 0.0066                                                                                  | R44            | -                                                               | 0.0019                                                                                   |
| R10            | 0.0006                                                          | 0.0061                                                                                  | R45            | -                                                               | 0.0043                                                                                   |
| R11            | 0.0005                                                          | 0.0055                                                                                  | R46            | -                                                               | 0.0026                                                                                   |
| R12            | 0.0004                                                          | 0.0041                                                                                  | R47            | -                                                               | 0.0045                                                                                   |
| R13            | 0.0003                                                          | 0.0035                                                                                  | R48            | -                                                               | 0.0019                                                                                   |
| R14            | 0.0003                                                          | 0.0040                                                                                  | R49            | -                                                               | 0.0009                                                                                   |
| R15            | 0.0001                                                          | 0.0014                                                                                  | R50            | -                                                               | 0.0005                                                                                   |
| R16            | 0.0001                                                          | 0.0016                                                                                  | R51            | -                                                               | 0.0004                                                                                   |
| R17            | 0.0003                                                          | 0.0031                                                                                  | R52            | -                                                               | 0.0004                                                                                   |
| R18            | 0.0002                                                          | 0.0031                                                                                  | R53            | -                                                               | 0.0002                                                                                   |
| R19            | 0.0001                                                          | 0.0011                                                                                  | R54            | -                                                               | 0.0002                                                                                   |
| R20            | 0.0001                                                          | 0.0011                                                                                  | R55            | -                                                               | 0.0001                                                                                   |
| R21            | 0.0011                                                          | 0.0080                                                                                  | R56            | -                                                               | 0.0001                                                                                   |
| R22            | 0.0010                                                          | 0.0079                                                                                  | R57            | -                                                               | 0.0002                                                                                   |
| R23            | 0.0009                                                          | 0.0083                                                                                  | R58            | -                                                               | 0.0001                                                                                   |
| R24            | 0.0008                                                          | 0.0090                                                                                  | R59            | -                                                               | 0.0000                                                                                   |
| R25            | 0.0006                                                          | 0.0055                                                                                  | R60            | -                                                               | 0.0002                                                                                   |
| R26            | 0.0008                                                          | 0.0112                                                                                  | R61            | -                                                               | 0.0001                                                                                   |
| R27            | 0.0029                                                          | 0.0160                                                                                  | R62            | -                                                               | 0.0002                                                                                   |
| R28            | 0.0047                                                          | 0.0153                                                                                  | R63            | -                                                               | 0.0001                                                                                   |
| R29            | 0.0014                                                          | 0.0106                                                                                  | R64            | -                                                               | 0.0002                                                                                   |
| R30            | 0.0027                                                          | 0.0103                                                                                  | R65            | -                                                               | 0.0005                                                                                   |
| R31            | 0.0007                                                          | 0.0058                                                                                  | R66            | -                                                               | 0.0003                                                                                   |
| R32            | 0.0008                                                          | 0.0053                                                                                  | R67            | -                                                               | 0.0003                                                                                   |
| R33            | 0.0008                                                          | 0.0048                                                                                  | R68            | -                                                               | 0.0004                                                                                   |
| R34            | 0.0009                                                          | 0.0085                                                                                  | R69            | -                                                               | 0.0003                                                                                   |

# Table C.1: Modification 4 increment and whole of mine increment including baseline year 2016 for annual average lead (as TSP) concentrations (µg/m<sup>3</sup>)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.0007                                                          | 0.0079                                                                                  | R70            | -                                                               | 0.0002                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 0.005                                                           | 0.0187                                                                                  | R36            | 0.002                                                           | 0.0118                                                                                   |
| R2             | 0.006                                                           | 0.0226                                                                                  | R37            | 0.002                                                           | 0.0119                                                                                   |
| R3             | 0.010                                                           | 0.0347                                                                                  | R38            | 0.001                                                           | 0.0041                                                                                   |
| R4             | 0.005                                                           | 0.0206                                                                                  | R39            | 0.001                                                           | 0.0043                                                                                   |
| R5             | 0.002                                                           | 0.0139                                                                                  | R40            | 0.003                                                           | 0.0127                                                                                   |
| R6             | 0.002                                                           | 0.0134                                                                                  | R41            | 0.004                                                           | 0.0151                                                                                   |
| R7             | 0.001                                                           | 0.0047                                                                                  | R42            | 0.004                                                           | 0.0168                                                                                   |
| R8             | 0.002                                                           | 0.0126                                                                                  | R43            | -                                                               | 0.0056                                                                                   |
| R9             | 0.002                                                           | 0.0095                                                                                  | R44            | -                                                               | 0.0027                                                                                   |
| R10            | 0.002                                                           | 0.0095                                                                                  | R45            | -                                                               | 0.0065                                                                                   |
| R11            | 0.002                                                           | 0.0084                                                                                  | R46            | -                                                               | 0.0027                                                                                   |
| R12            | 0.001                                                           | 0.0065                                                                                  | R47            | -                                                               | 0.0074                                                                                   |
| R13            | 0.001                                                           | 0.0054                                                                                  | R48            | -                                                               | 0.0035                                                                                   |
| R14            | 0.001                                                           | 0.0055                                                                                  | R49            | -                                                               | 0.0019                                                                                   |
| R15            | 0.000                                                           | 0.0023                                                                                  | R50            | -                                                               | 0.0091                                                                                   |
| R16            | 0.001                                                           | 0.0030                                                                                  | R51            | -                                                               | 0.0058                                                                                   |
| R17            | 0.001                                                           | 0.0047                                                                                  | R52            | -                                                               | 0.0065                                                                                   |
| R18            | 0.001                                                           | 0.0036                                                                                  | R53            | -                                                               | 0.0034                                                                                   |
| R19            | 0.000                                                           | 0.0020                                                                                  | R54            | -                                                               | 0.0040                                                                                   |
| R20            | 0.000                                                           | 0.0020                                                                                  | R55            | -                                                               | 0.0011                                                                                   |
| R21            | 0.004                                                           | 0.0188                                                                                  | R56            | -                                                               | 0.0014                                                                                   |
| R22            | 0.004                                                           | 0.0188                                                                                  | R57            | -                                                               | 0.0024                                                                                   |
| R23            | 0.003                                                           | 0.0213                                                                                  | R58            | -                                                               | 0.0014                                                                                   |
| R24            | 0.003                                                           | 0.0253                                                                                  | R59            | -                                                               | 0.0007                                                                                   |
| R25            | 0.002                                                           | 0.0125                                                                                  | R60            | -                                                               | 0.0047                                                                                   |
| R26            | 0.003                                                           | 0.0342                                                                                  | R61            | -                                                               | 0.0013                                                                                   |
| R27            | 0.010                                                           | 0.0501                                                                                  | R62            | -                                                               | 0.0028                                                                                   |
| R28            | 0.016                                                           | 0.0466                                                                                  | R63            | -                                                               | 0.0020                                                                                   |
| R29            | 0.005                                                           | 0.0317                                                                                  | R64            | -                                                               | 0.0036                                                                                   |
| R30            | 0.010                                                           | 0.0315                                                                                  | R65            | -                                                               | 0.0099                                                                                   |
| R31            | 0.002                                                           | 0.0141                                                                                  | R66            | -                                                               | 0.0059                                                                                   |
| R32            | 0.003                                                           | 0.0136                                                                                  | R67            | -                                                               | 0.0063                                                                                   |
| R33            | 0.003                                                           | 0.0144                                                                                  | R68            | -                                                               | 0.0059                                                                                   |
| R34            | 0.004                                                           | 0.0146                                                                                  | R69            | -                                                               | 0.0047                                                                                   |

## Table C.2: Modification 4 increment and whole of mine increment including baseline year 2016 for annual average lead deposition (g/m²/month)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.003                                                           | 0.0128                                                                                  | R70            | -                                                               | 0.0037                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 0.06                                                            | 0.3553                                                                                  | R36            | 0.04                                                            | 0.3012                                                                                   |
| R2             | 0.08                                                            | 0.4422                                                                                  | R37            | 0.03                                                            | 0.2644                                                                                   |
| R3             | 0.12                                                            | 0.7510                                                                                  | R38            | 0.01                                                            | 0.1345                                                                                   |
| R4             | 0.07                                                            | 0.4177                                                                                  | R39            | 0.01                                                            | 0.1396                                                                                   |
| R5             | 0.04                                                            | 0.3253                                                                                  | R40            | 0.04                                                            | 0.2816                                                                                   |
| R6             | 0.03                                                            | 0.3468                                                                                  | R41            | 0.05                                                            | 0.3484                                                                                   |
| R7             | 0.01                                                            | 0.1499                                                                                  | R42            | 0.06                                                            | 0.3883                                                                                   |
| R8             | 0.03                                                            | 0.3302                                                                                  | R43            | -                                                               | 0.1174                                                                                   |
| R9             | 0.03                                                            | 0.2598                                                                                  | R44            | -                                                               | 0.0730                                                                                   |
| R10            | 0.03                                                            | 0.2466                                                                                  | R45            | -                                                               | 0.1611                                                                                   |
| R11            | 0.02                                                            | 0.2190                                                                                  | R46            | -                                                               | 0.0935                                                                                   |
| R12            | 0.02                                                            | 0.1625                                                                                  | R47            | -                                                               | 0.1778                                                                                   |
| R13            | 0.02                                                            | 0.1405                                                                                  | R48            | -                                                               | 0.0795                                                                                   |
| R14            | 0.02                                                            | 0.1586                                                                                  | R49            | -                                                               | 0.0379                                                                                   |
| R15            | 0.01                                                            | 0.0562                                                                                  | R50            | -                                                               | 0.2260                                                                                   |
| R16            | 0.01                                                            | 0.0675                                                                                  | R51            | -                                                               | 0.1595                                                                                   |
| R17            | 0.01                                                            | 0.1247                                                                                  | R52            | -                                                               | 0.1747                                                                                   |
| R18            | 0.01                                                            | 0.1216                                                                                  | R53            | -                                                               | 0.1146                                                                                   |
| R19            | 0.01                                                            | 0.0454                                                                                  | R54            | -                                                               | 0.1029                                                                                   |
| R20            | 0.01                                                            | 0.0449                                                                                  | R55            | -                                                               | 0.0475                                                                                   |
| R21            | 0.06                                                            | 0.3642                                                                                  | R56            | -                                                               | 0.0518                                                                                   |
| R22            | 0.05                                                            | 0.3610                                                                                  | R57            | -                                                               | 0.0943                                                                                   |
| R23            | 0.05                                                            | 0.3734                                                                                  | R58            | -                                                               | 0.0407                                                                                   |
| R24            | 0.05                                                            | 0.3936                                                                                  | R59            | -                                                               | 0.0202                                                                                   |
| R25            | 0.04                                                            | 0.2419                                                                                  | R60            | -                                                               | 0.1037                                                                                   |
| R26            | 0.06                                                            | 0.4746                                                                                  | R61            | -                                                               | 0.0528                                                                                   |
| R27            | 0.32                                                            | 0.9447                                                                                  | R62            | -                                                               | 0.1039                                                                                   |
| R28            | 0.56                                                            | 1.0618                                                                                  | R63            | -                                                               | 0.0672                                                                                   |
| R29            | 0.13                                                            | 0.5237                                                                                  | R64            | -                                                               | 0.0778                                                                                   |
| R30            | 0.30                                                            | 0.6338                                                                                  | R65            | -                                                               | 0.1948                                                                                   |
| R31            | 0.06                                                            | 0.2637                                                                                  | R66            | -                                                               | 0.1381                                                                                   |
| R32            | 0.07                                                            | 0.2546                                                                                  | R67            | -                                                               | 0.1390                                                                                   |
| R33            | 0.07                                                            | 0.2493                                                                                  | R68            | -                                                               | 0.1249                                                                                   |
| R34            | 0.05                                                            | 0.3565                                                                                  | R69            | -                                                               | 0.1006                                                                                   |

## Table C.3: Modification 4 increment and whole of mine increment including baseline year 2016 for annual average TSP concentrations ( $\mu$ g/m<sup>3</sup>)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.04                                                            | 0.3292                                                                                  | R70            | -                                                               | 0.0994                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 0.03                                                            | 0.3349                                                                                  | R36            | 0.02                                                            | 0.2590                                                                                   |
| R2             | 0.04                                                            | 0.3412                                                                                  | R37            | 0.02                                                            | 0.2347                                                                                   |
| R3             | 0.05                                                            | 0.5426                                                                                  | R38            | 0.01                                                            | 0.1070                                                                                   |
| R4             | 0.03                                                            | 0.3221                                                                                  | R39            | 0.01                                                            | 0.1148                                                                                   |
| R5             | 0.02                                                            | 0.2589                                                                                  | R40            | 0.02                                                            | 0.2421                                                                                   |
| R6             | 0.02                                                            | 0.2604                                                                                  | R41            | 0.02                                                            | 0.2962                                                                                   |
| R7             | 0.01                                                            | 0.1364                                                                                  | R42            | 0.03                                                            | 0.3450                                                                                   |
| R8             | 0.02                                                            | 0.2730                                                                                  | R43            | -                                                               | 0.1005                                                                                   |
| R9             | 0.02                                                            | 0.2158                                                                                  | R44            | -                                                               | 0.0618                                                                                   |
| R10            | 0.02                                                            | 0.2049                                                                                  | R45            | -                                                               | 0.1377                                                                                   |
| R11            | 0.01                                                            | 0.1779                                                                                  | R46            | -                                                               | 0.0806                                                                                   |
| R12            | 0.01                                                            | 0.1406                                                                                  | R47            | -                                                               | 0.1521                                                                                   |
| R13            | 0.01                                                            | 0.1204                                                                                  | R48            | -                                                               | 0.0708                                                                                   |
| R14            | 0.01                                                            | 0.1327                                                                                  | R49            | -                                                               | 0.0402                                                                                   |
| R15            | 0.00                                                            | 0.0560                                                                                  | R50            | -                                                               | 0.1862                                                                                   |
| R16            | 0.01                                                            | 0.0629                                                                                  | R51            | -                                                               | 0.1350                                                                                   |
| R17            | 0.01                                                            | 0.1113                                                                                  | R52            | -                                                               | 0.1479                                                                                   |
| R18            | 0.01                                                            | 0.1016                                                                                  | R53            | -                                                               | 0.0961                                                                                   |
| R19            | 0.00                                                            | 0.0449                                                                                  | R54            | -                                                               | 0.0946                                                                                   |
| R20            | 0.00                                                            | 0.0481                                                                                  | R55            | -                                                               | 0.0440                                                                                   |
| R21            | 0.03                                                            | 0.3741                                                                                  | R56            | -                                                               | 0.0498                                                                                   |
| R22            | 0.03                                                            | 0.3772                                                                                  | R57            | -                                                               | 0.0830                                                                                   |
| R23            | 0.02                                                            | 0.3770                                                                                  | R58            | -                                                               | 0.0440                                                                                   |
| R24            | 0.02                                                            | 0.3637                                                                                  | R59            | -                                                               | 0.0237                                                                                   |
| R25            | 0.02                                                            | 0.2584                                                                                  | R60            | -                                                               | 0.0897                                                                                   |
| R26            | 0.03                                                            | 0.3826                                                                                  | R61            | -                                                               | 0.0443                                                                                   |
| R27            | 0.14                                                            | 0.6578                                                                                  | R62            | -                                                               | 0.0790                                                                                   |
| R28            | 0.19                                                            | 0.6491                                                                                  | R63            | -                                                               | 0.0650                                                                                   |
| R29            | 0.06                                                            | 0.4153                                                                                  | R64            | -                                                               | 0.0720                                                                                   |
| R30            | 0.11                                                            | 0.4332                                                                                  | R65            | -                                                               | 0.1645                                                                                   |
| R31            | 0.03                                                            | 0.2194                                                                                  | R66            | -                                                               | 0.1118                                                                                   |
| R32            | 0.03                                                            | 0.2101                                                                                  | R67            | -                                                               | 0.1178                                                                                   |
| R33            | 0.04                                                            | 0.2596                                                                                  | R68            | -                                                               | 0.1108                                                                                   |
| R34            | 0.03                                                            | 0.3189                                                                                  | R69            | -                                                               | 0.0869                                                                                   |

## Table C.4: Modification 4 increment and whole of mine increment including baseline year 2016 for annual average $PM_{10}$ concentrations ( $\mu g/m^3$ )

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R35            | 0.02                                                            | 0.2837                                                                                  | R70            | -                                                               | 0.0844                                                                                   |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

### Table C.5: Modification 4 increment and whole of mine increment including baseline year 2016 for maximum 24-hour average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 1.40                                                            | 2.5036                                                                                  | R36            | 0.69                                                            | 1.6793                                                                                   |
| R2             | 1.77                                                            | 2.3785                                                                                  | R37            | 0.58                                                            | 1.6171                                                                                   |
| R3             | 1.92                                                            | 3.9565                                                                                  | R38            | 0.74                                                            | 1.2093                                                                                   |
| R4             | 1.02                                                            | 3.4064                                                                                  | R39            | 0.72                                                            | 1.2894                                                                                   |
| R5             | 0.81                                                            | 3.1522                                                                                  | R40            | 0.68                                                            | 2.3038                                                                                   |
| R6             | 1.20                                                            | 2.1103                                                                                  | R41            | 0.66                                                            | 2.7695                                                                                   |
| R7             | 0.50                                                            | 1.4378                                                                                  | R42            | 0.64                                                            | 3.1138                                                                                   |
| R8             | 0.72                                                            | 1.9028                                                                                  | R43            | -                                                               | 1.1625                                                                                   |
| R9             | 1.19                                                            | 1.9721                                                                                  | R44            | -                                                               | 0.7288                                                                                   |
| R10            | 0.50                                                            | 1.8020                                                                                  | R45            | -                                                               | 0.9909                                                                                   |
| R11            | 0.64                                                            | 2.0117                                                                                  | R46            | -                                                               | 1.1189                                                                                   |
| R12            | 0.59                                                            | 1.0952                                                                                  | R47            | -                                                               | 0.9938                                                                                   |
| R13            | 0.56                                                            | 0.8927                                                                                  | R48            | -                                                               | 0.6911                                                                                   |
| R14            | 0.32                                                            | 1.1371                                                                                  | R49            | -                                                               | 0.4416                                                                                   |
| R15            | 0.28                                                            | 0.6067                                                                                  | R50            | -                                                               | 1.3267                                                                                   |
| R16            | 0.35                                                            | 0.6375                                                                                  | R51            | -                                                               | 1.3717                                                                                   |
| R17            | 0.36                                                            | 1.0064                                                                                  | R52            | -                                                               | 1.4466                                                                                   |
| R18            | 0.43                                                            | 1.6091                                                                                  | R53            | -                                                               | 1.5200                                                                                   |
| R19            | 0.21                                                            | 0.6414                                                                                  | R54            | -                                                               | 1.0365                                                                                   |
| R20            | 0.37                                                            | 0.5208                                                                                  | R55            | -                                                               | 0.7158                                                                                   |
| R21            | 1.78                                                            | 2.6784                                                                                  | R56            | -                                                               | 0.7926                                                                                   |
| R22            | 1.27                                                            | 2.4515                                                                                  | R57            | -                                                               | 0.8436                                                                                   |
| R23            | 1.03                                                            | 2.5068                                                                                  | R58            | -                                                               | 0.4247                                                                                   |
| R24            | 0.73                                                            | 2.5112                                                                                  | R59            | -                                                               | 0.2339                                                                                   |
| R25            | 0.79                                                            | 1.8364                                                                                  | R60            | -                                                               | 0.7321                                                                                   |
| R26            | 0.65                                                            | 2.4264                                                                                  | R61            | -                                                               | 0.6946                                                                                   |
| R27            | 3.12                                                            | 7.7474                                                                                  | R62            | -                                                               | 0.8913                                                                                   |
| R28            | 3.18                                                            | 6.0291                                                                                  | R63            | -                                                               | 0.6227                                                                                   |
| R29            | 1.40                                                            | 2.3024                                                                                  | R64            | -                                                               | 0.7813                                                                                   |
| R30            | 2.26                                                            | 3.1442                                                                                  | R65            | -                                                               | 1.0405                                                                                   |
| R31            | 1.74                                                            | 2.3688                                                                                  | R66            | -                                                               | 0.8916                                                                                   |
| R32            | 0.79                                                            | 1.3199                                                                                  | R67            | -                                                               | 0.9968                                                                                   |
| R33            | 1.90                                                            | 2.8243                                                                                  | R68            | -                                                               | 0.9798                                                                                   |
| R34            | 0.80                                                            | 2.5495                                                                                  | R69            | -                                                               | 0.9875                                                                                   |

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.97                                                            | 1.7486                                                                                  | R70            | -                                                               | 0.7394                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1             | 0.01                                                            | 0.0720                                                                                  | R36            | 0.00                                                            | 0.4451                                                                                   |
| R2             | 0.01                                                            | 0.0774                                                                                  | R37            | 0.01                                                            | 0.4343                                                                                   |
| R3             | 0.01                                                            | 0.1256                                                                                  | R38            | 0.00                                                            | 0.2312                                                                                   |
| R4             | 0.00                                                            | 0.0760                                                                                  | R39            | 0.00                                                            | 0.3195                                                                                   |
| R5             | 0.00                                                            | 0.0626                                                                                  | R40            | 0.00                                                            | 0.6496                                                                                   |
| R6             | 0.00                                                            | 0.0628                                                                                  | R41            | 0.00                                                            | 0.7942                                                                                   |
| R7             | 0.00                                                            | 0.0342                                                                                  | R42            | 0.00                                                            | 0.9840                                                                                   |
| R8             | 0.00                                                            | 0.0679                                                                                  | R43            | -                                                               | 1.6632                                                                                   |
| R9             | 0.00                                                            | 0.0544                                                                                  | R44            | -                                                               | 0.1420                                                                                   |
| R10            | 0.00                                                            | 0.0515                                                                                  | R45            | -                                                               | 0.2856                                                                                   |
| R11            | 0.00                                                            | 0.0430                                                                                  | R46            | -                                                               | 0.3360                                                                                   |
| R12            | 0.00                                                            | 0.0351                                                                                  | R47            | -                                                               | 0.3350                                                                                   |
| R13            | 0.00                                                            | 0.0303                                                                                  | R48            | -                                                               | 0.1266                                                                                   |
| R14            | 0.00                                                            | 0.0344                                                                                  | R49            | -                                                               | 0.0781                                                                                   |
| R15            | 0.00                                                            | 0.0152                                                                                  | R50            | -                                                               | 0.6314                                                                                   |
| R16            | 0.00                                                            | 0.0161                                                                                  | R51            | -                                                               | 1.2090                                                                                   |
| R17            | 0.00                                                            | 0.0294                                                                                  | R52            | -                                                               | 0.9466                                                                                   |
| R18            | 0.00                                                            | 0.0255                                                                                  | R53            | -                                                               | 0.3863                                                                                   |
| R19            | 0.00                                                            | 0.0116                                                                                  | R54            | -                                                               | 0.8305                                                                                   |
| R20            | 0.00                                                            | 0.0131                                                                                  | R55            | -                                                               | 0.2114                                                                                   |
| R21            | 0.01                                                            | 0.0795                                                                                  | R56            | -                                                               | 0.2126                                                                                   |
| R22            | 0.01                                                            | 0.0811                                                                                  | R57            | -                                                               | 0.3013                                                                                   |
| R23            | 0.01                                                            | 0.0827                                                                                  | R58            | -                                                               | 0.2888                                                                                   |
| R24            | 0.01                                                            | 0.0840                                                                                  | R59            | -                                                               | 0.1011                                                                                   |
| R25            | 0.00                                                            | 0.0579                                                                                  | R60            | -                                                               | 0.1942                                                                                   |
| R26            | 0.01                                                            | 0.0997                                                                                  | R61            | -                                                               | 0.1985                                                                                   |
| R27            | 0.06                                                            | 0.1735                                                                                  | R62            | -                                                               | 0.1854                                                                                   |
| R28            | 0.08                                                            | 0.1806                                                                                  | R63            | -                                                               | 0.2244                                                                                   |
| R29            | 0.02                                                            | 0.1059                                                                                  | R64            | -                                                               | 0.1452                                                                                   |
| R30            | 0.05                                                            | 0.1186                                                                                  | R65            | -                                                               | 0.2242                                                                                   |
| R31            | 0.01                                                            | 0.0555                                                                                  | R66            | -                                                               | 0.2146                                                                                   |
| R32            | 0.01                                                            | 0.0533                                                                                  | R67            | -                                                               | 0.2381                                                                                   |
| R33            | 0.02                                                            | 0.0556                                                                                  | R68            | -                                                               | 0.2067                                                                                   |
| R34            | 0.00                                                            | 0.0802                                                                                  | R69            | -                                                               | 0.1642                                                                                   |

## Table C.6: Modification 4 increment and whole of mine increment including baseline year 2016 for annual average $PM_{2.5}$ concentrations ( $\mu$ g/m<sup>3</sup>)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.00                                                            | 0.0684                                                                                  | R70            | -                                                               | 0.1764                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

#### Receptor **Modification 4** MOD4 'whole of mine' Receptor **Modification 4** MOD4 'whole of mine' ID Increment (as increment including ID Increment (as increment including presented in baseline year 2016 and presented in MOD4 baseline year 2016 and **MOD4** report) **MOD4** increment report) **MOD4** increment R1 0.22 0.6746 R36 0.18 0.4321 R2 0.23 0.5123 R37 0.22 0.4198 R3 0.23 1.1291 R38 0.10 0.2311 R4 0.13 0.7932 R39 0.09 0.3193 R5 0.12 0.7944 R40 0.18 0.6322 R6 0.27 0.5728 R41 0.16 0.7798 0.10 0.4039 R42 0.15 0.9705 R7 R8 0.12 0.5219 R43 0.2723 -0.17 0.5650 R44 0.2660 R9 \_ R10 0.15 0.5674 R45 0.3790 \_ R11 0.09 0.4763 R46 0.3867 -R12 0.07 0.3255 R47 0.3692 -R13 0.07 0.2669 R48 1.5781 \_ R14 0.07 0.3756 R49 \_ 1.5178 R15 0.16 0.2006 R50 0.6314 -R16 0.08 0.1413 R51 1.2090 -0.9466 R17 0.3185 R52 0.17 -R18 0.07 0.4210 R53 0.3863 -R19 0.07 0.1167 R54 0.8305 -R20 0.05 0.1804 R55 0.2114 -R21 0.21 0.5408 R56 0.2126 \_ R22 0.20 0.5336 R57 0.3013 \_ R23 0.22 0.4621 R58 0.2888 -R24 0.23 0.4685 R59 0.1011 -R25 0.5335 0.1942 0.13 R60 -R26 0.24 0.5946 R61 0.1985 -R27 1.58 1.6473 R62 \_ 0.1854 R28 1.52 1.5429 R63 0.2244 -R29 0.62 0.7889 R64 0.1452 -R30 1.06 1.2399 R65 0.2242 -R31 0.87 0.9819 R66 -0.2146 R32 0.38 0.5021 R67 0.2381 -

### Table C.7: Modification 4 increment and whole of mine increment including baseline year 2016 for maximum 24-hour average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>)

0.9369

0.8168

R68

R69

-

-

R33

R34

0.82

0.16

0.2067

0.1642

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.18                                                            | 0.4657                                                                                  | R70            | -                                                               | 0.1764                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

| Receptor Modification 4<br>ID Increment (as<br>presented in<br>MOD4 report) |      | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'w hole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|-----------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| R1                                                                          | 0.02 | 0.0903                                                                                  | R36            | 0.01                                                            | 0.0670                                                                                   |
| R2                                                                          | 0.02 | 0.1141                                                                                  | R37            | 0.01                                                            | 0.0603                                                                                   |
| R3                                                                          | 0.04 | 0.1970                                                                                  | R38            | 0.00                                                            | 0.0249                                                                                   |
| R4                                                                          | 0.02 | 0.1079                                                                                  | R39            | 0.00                                                            | 0.0262                                                                                   |
| R5                                                                          | 0.01 | 0.0757                                                                                  | R40            | 0.01                                                            | 0.0681                                                                                   |
| R6                                                                          | 0.01 | 0.0734                                                                                  | R41            | 0.02                                                            | 0.0856                                                                                   |
| R7                                                                          | 0.00 | 0.0295                                                                                  | R42            | 0.02                                                            | 0.1048                                                                                   |
| R8                                                                          | 0.01 | 0.0767                                                                                  | R43            | -                                                               | 0.0285                                                                                   |
| R9                                                                          | 0.01 | 0.0566                                                                                  | R44            | -                                                               | 0.0148                                                                                   |
| R10                                                                         | 0.01 | 0.0563                                                                                  | R45            | -                                                               | 0.0359                                                                                   |
| R11                                                                         | 0.01 | 0.0475                                                                                  | R46            | -                                                               | 0.0166                                                                                   |
| R12                                                                         | 0.01 | 0.0362                                                                                  | R47            | -                                                               | 0.0420                                                                                   |
| R13                                                                         | 0.00 | 0.0303                                                                                  | R48            | -                                                               | 0.0184                                                                                   |
| R14                                                                         | 0.01 | 0.0334                                                                                  | R49            | -                                                               | 0.0096                                                                                   |
| R15                                                                         | 0.00 | 0.0127                                                                                  | R50            | -                                                               | 0.0525                                                                                   |
| R16                                                                         | 0.00 | 0.0160                                                                                  | R51            | -                                                               | 0.0333                                                                                   |
| R17                                                                         | 0.00 | 0.0279                                                                                  | R52            | -                                                               | 0.0372                                                                                   |
| R18                                                                         | 0.00 | 0.0224                                                                                  | R53            | -                                                               | 0.0209                                                                                   |
| R19                                                                         | 0.00 | 0.0107                                                                                  | R54            | -                                                               | 0.0228                                                                                   |
| R20                                                                         | 0.00 | 0.0107                                                                                  | R55            | -                                                               | 0.0076                                                                                   |
| R21                                                                         | 0.02 | 0.0916                                                                                  | R56            | -                                                               | 0.0089                                                                                   |
| R22                                                                         | 0.02 | 0.0904                                                                                  | R57            | -                                                               | 0.0161                                                                                   |
| R23                                                                         | 0.01 | 0.0951                                                                                  | R58            | -                                                               | 0.0084                                                                                   |
| R24                                                                         | 0.02 | 0.1050                                                                                  | R59            | -                                                               | 0.0042                                                                                   |
| R25                                                                         | 0.01 | 0.0606                                                                                  | R60            | -                                                               | 0.0243                                                                                   |
| R26                                                                         | 0.02 | 0.1330                                                                                  | R61            | -                                                               | 0.0087                                                                                   |
| R27                                                                         | 0.09 | 0.3199                                                                                  | R62            | -                                                               | 0.0175                                                                                   |
| R28                                                                         | 0.16 | 0.3308                                                                                  | R63            | -                                                               | 0.0126                                                                                   |
| R29                                                                         | 0.04 | 0.1597                                                                                  | R64            | -                                                               | 0.0200                                                                                   |
| R30                                                                         | 0.10 | 0.2035                                                                                  | R65            | -                                                               | 0.0506                                                                                   |
| R31                                                                         | 0.02 | 0.0683                                                                                  | R66            | -                                                               | 0.0309                                                                                   |
| R32                                                                         | 0.02 | 0.0707                                                                                  | R67            | -                                                               | 0.0324                                                                                   |
| R33                                                                         | 0.02 | 0.0756                                                                                  | R68            | -                                                               | 0.0303                                                                                   |
| R34                                                                         | 0.02 | 0.0952                                                                                  | R69            | -                                                               | 0.0241                                                                                   |

## Table C.8: Modification 4 increment and whole of mine increment including baseline year 2016 for monthly average deposited dust (g/m²/month)

| Receptor<br>ID | Modification 4<br>Increment (as<br>presented in<br>MOD4 report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment | Receptor<br>ID | Modification 4<br>Increment (as<br>presented in MOD4<br>report) | MOD4 'whole of mine'<br>increment including<br>baseline year 2016 and<br>MOD4 increment |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| R35            | 0.01                                                            | 0.0805                                                                                  | R70            | -                                                               | 0.0207                                                                                  |

Note: In the MOD4 report, values for the MOD4 increment are not present for receptors 49-70. These modelling results have been interpolated to provide the 'whole of mine' increment results.

#### APPENDIX D PREDICTED IMPACTS FOR RASP MINE FOR MOD6 CONSTRUCTION SCENARIO COMPARED WITH MOD4 SCENARIO

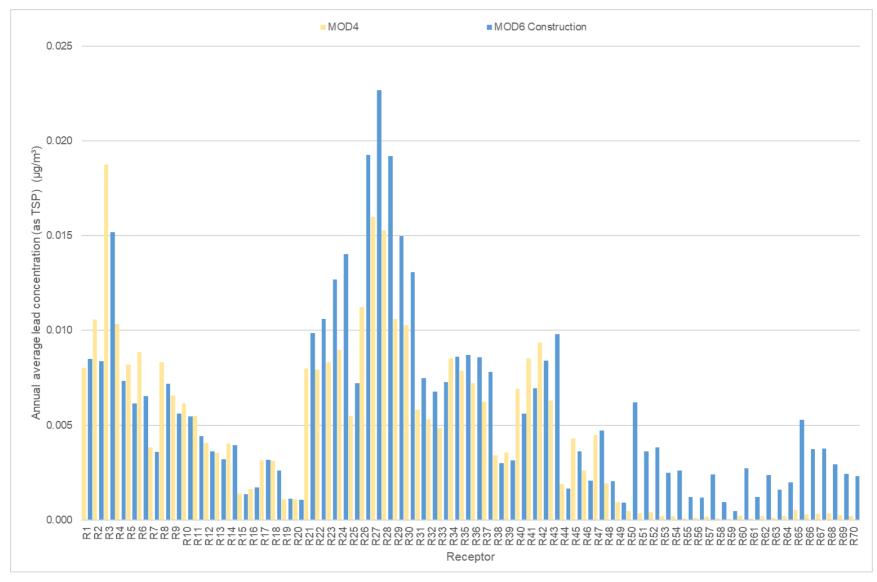



Figure D-1: Annual average lead concentration (as TSP) for the MOD6 construction scenario and MOD4 updated assessment




Figure D-2: Annual average lead deposition (as total particulate) for the MOD6 construction scenario and MOD4 updated assessment




Figure D-3: Annual average TSP concentration for the MOD6 construction scenario and MOD4 updated assessment

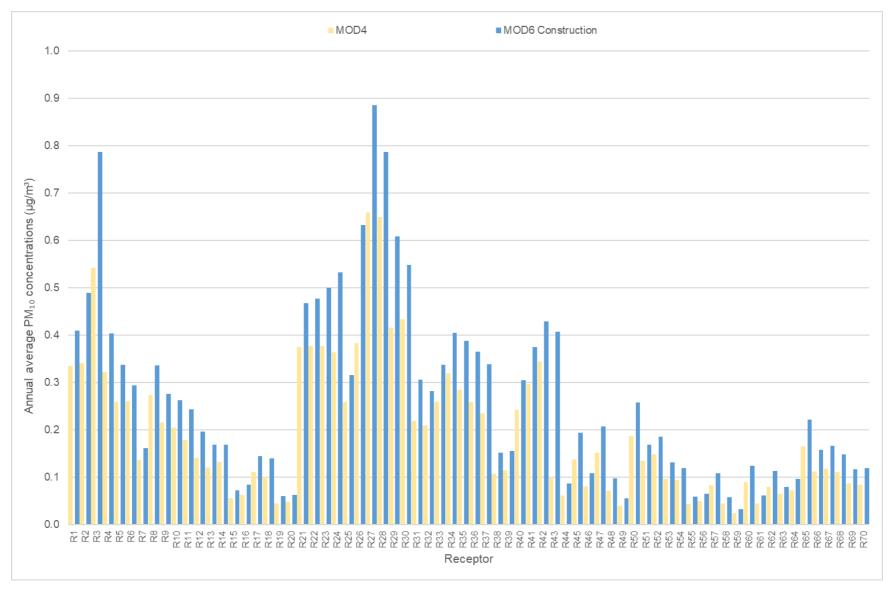



Figure D-4: Annual average PM<sub>10</sub> concentration for the MOD6 construction scenario and MOD4 updated assessment

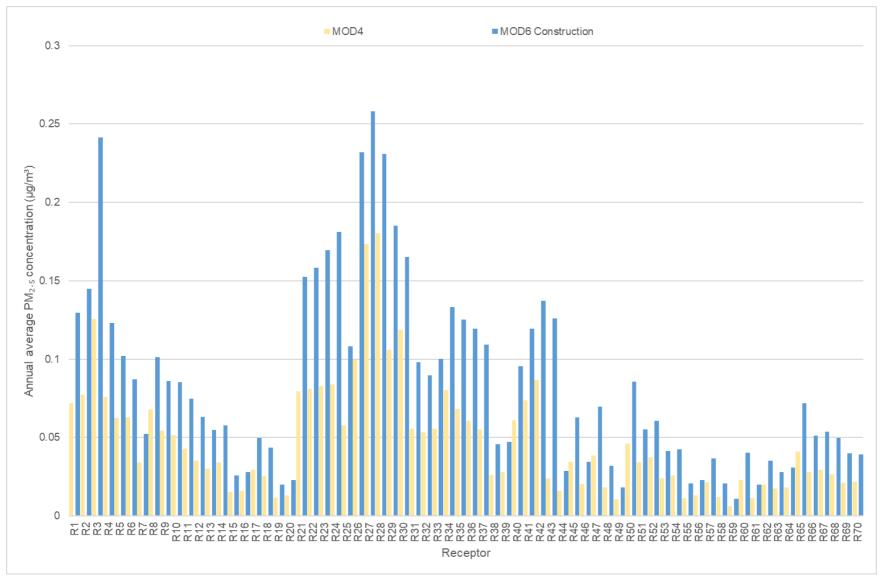



Figure D-5: Annual average PM<sub>2.5</sub> concentration for the MOD6 construction scenario and MOD4 updated assessment

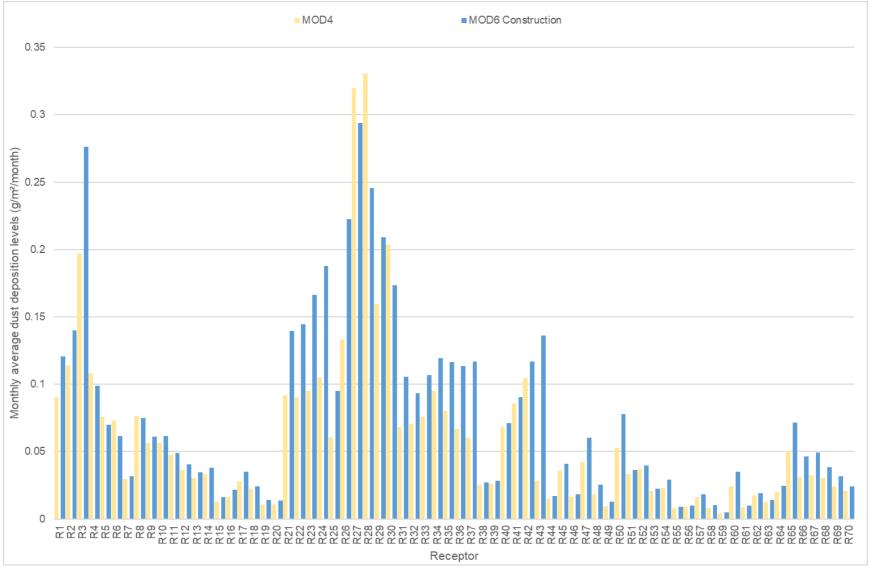



Figure D-6: Monthly average dust deposition levels for the MOD6 construction scenario and MOD4 updated assessment

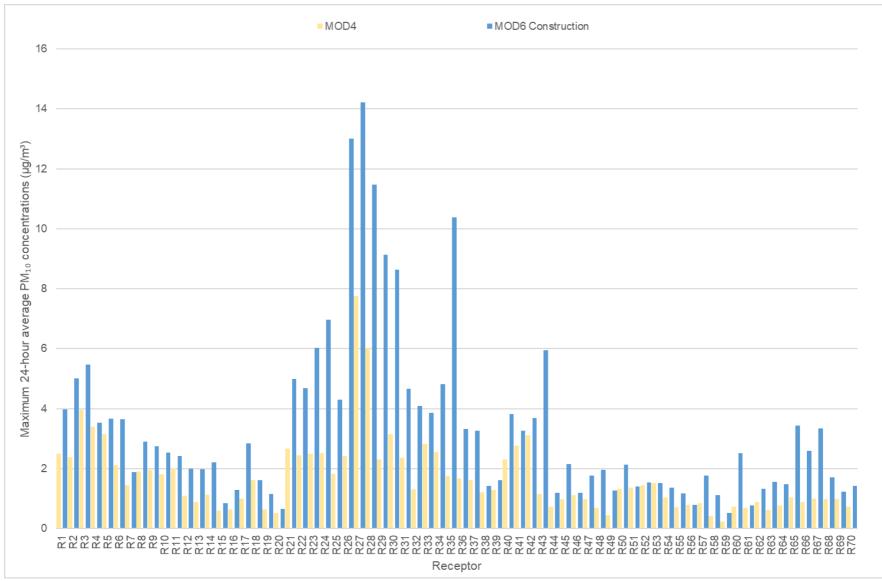



Figure D-7: Maximum 24-hour PM<sub>10</sub> concentrations for the MOD6 construction scenario and MOD4 updated assessment

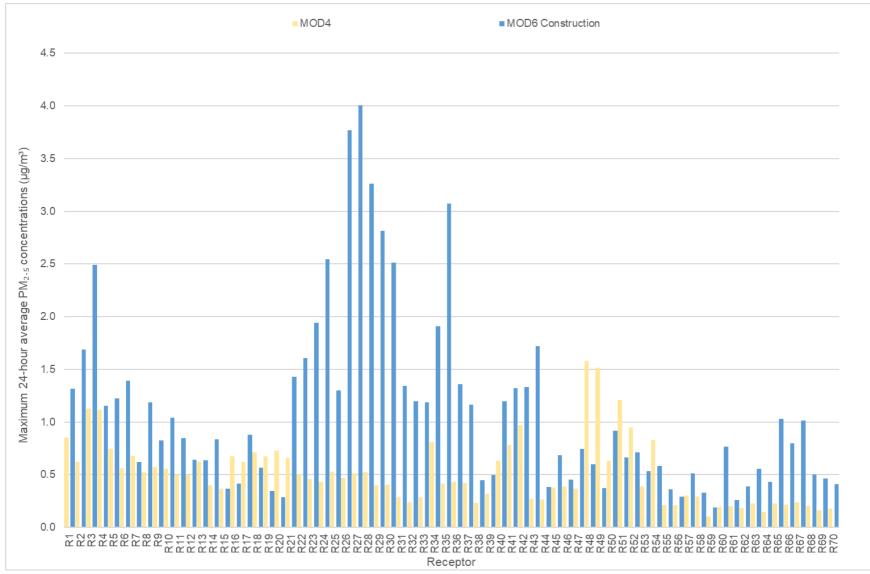



Figure D-8: Maximum 24-hour PM<sub>2.5</sub> concentrations for the MOD6 construction scenario and MOD4 updated assessment

#### APPENDIX E PREDICTED IMPACTS FOR RASP MINE FOR MOD6 OPERATIONAL SCENARIO COMPARED WITH BAU AND PPR SCENARIOS

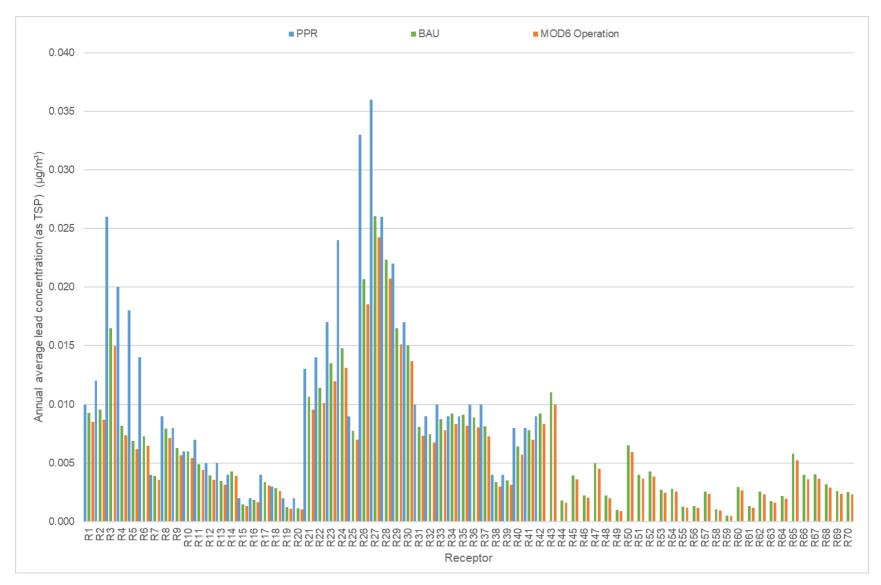



Figure E-1: Annual average lead concentration (as TSP) for the MOD6 operational scenario, PPR assessment and BAU scenario

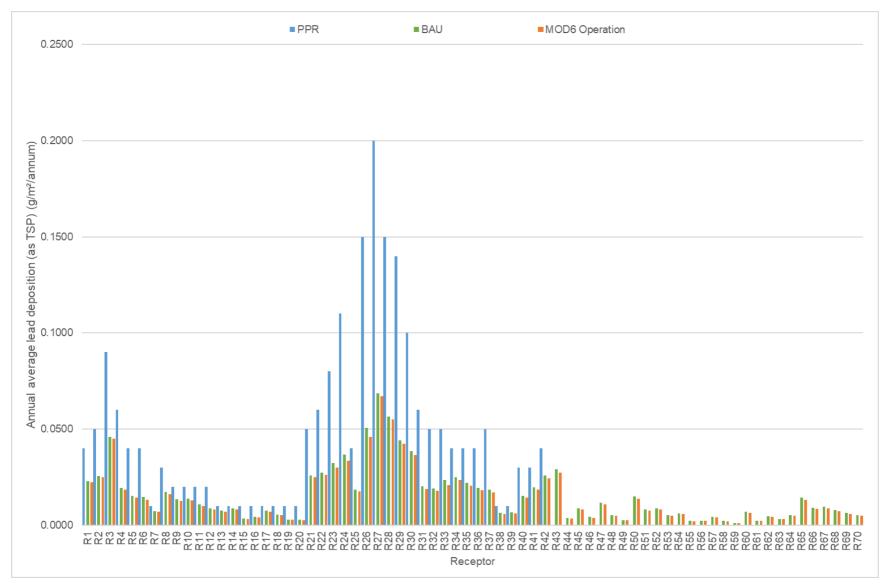



Figure E-2: Annual average lead deposition (as total particulate) for the MOD6 operational scenario, PPR assessment and BAU scenario

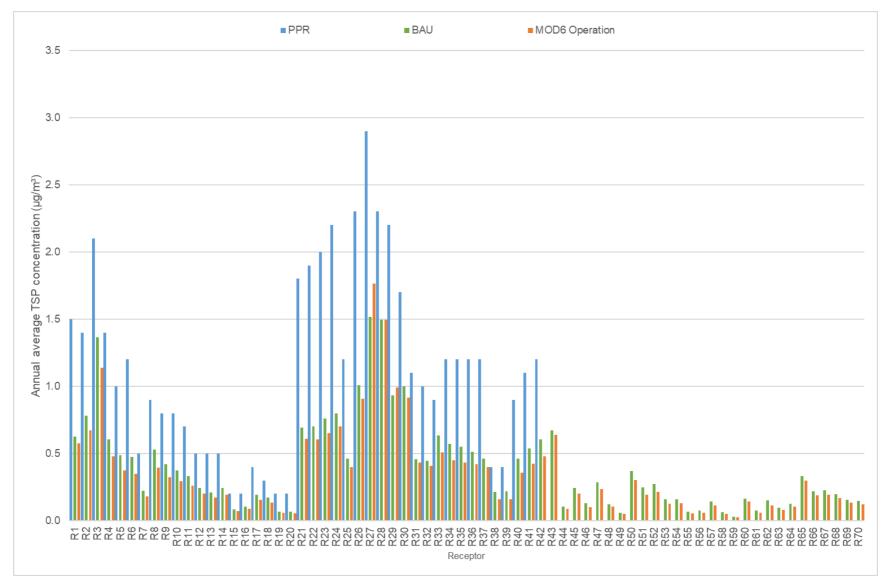



Figure E-3: Annual average TSP concentration for the MOD6 operational scenario, PPR assessment and BAU scenario

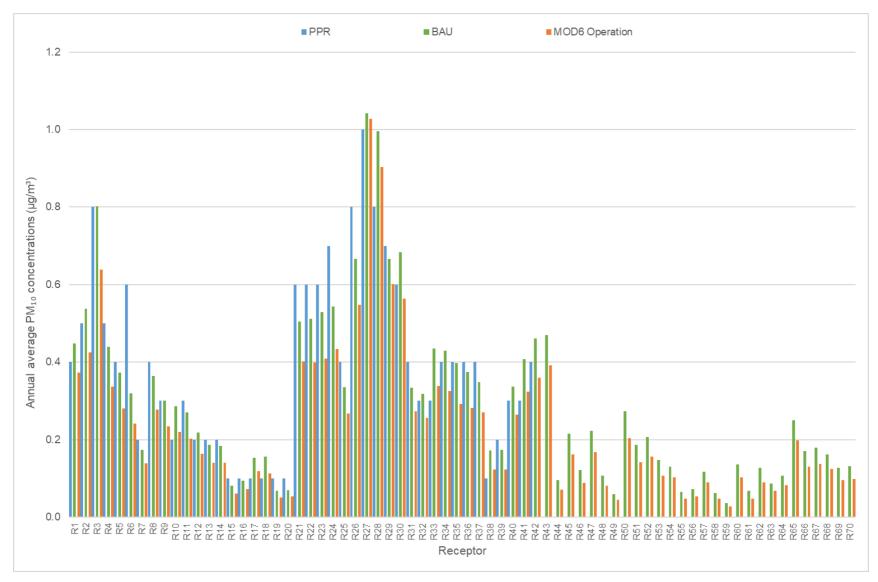



Figure E-4: Annual average PM<sub>10</sub> concentration for the MOD6 operational scenario, PPR assessment and BAU scenario

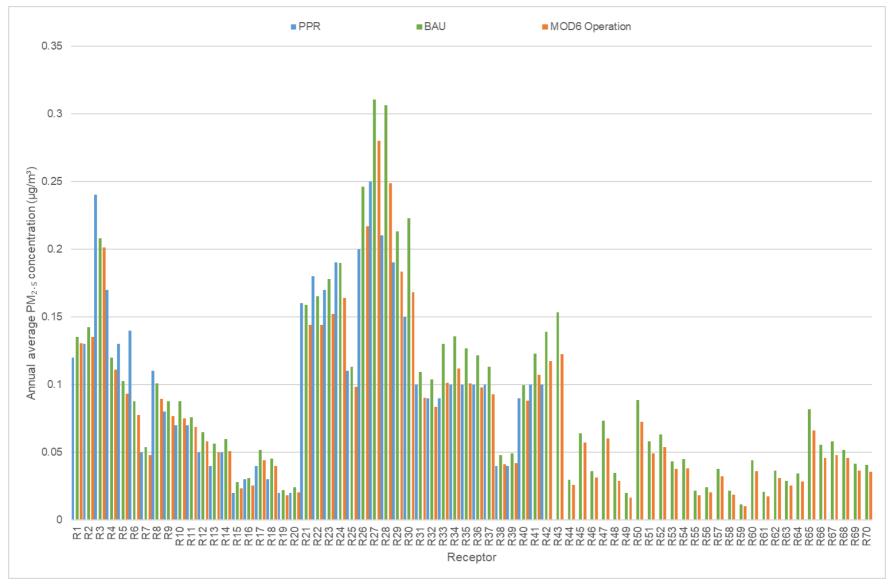



Figure E-5: Annual average PM<sub>2.5</sub> concentration for the MOD6 operational scenario, PPR assessment and BAU scenario

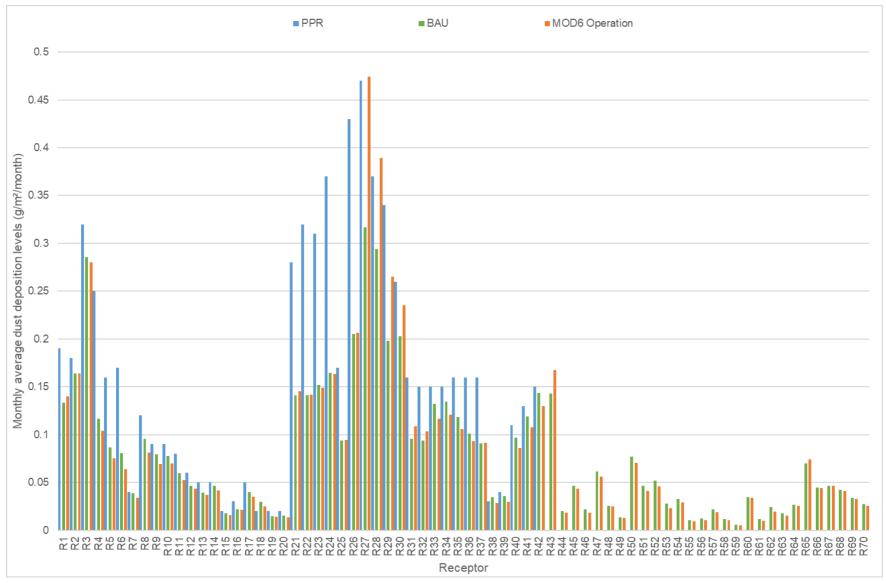



Figure E-6: Monthly average dust deposition levels for the MOD6 operational scenario, PPR assessment and BAU scenario

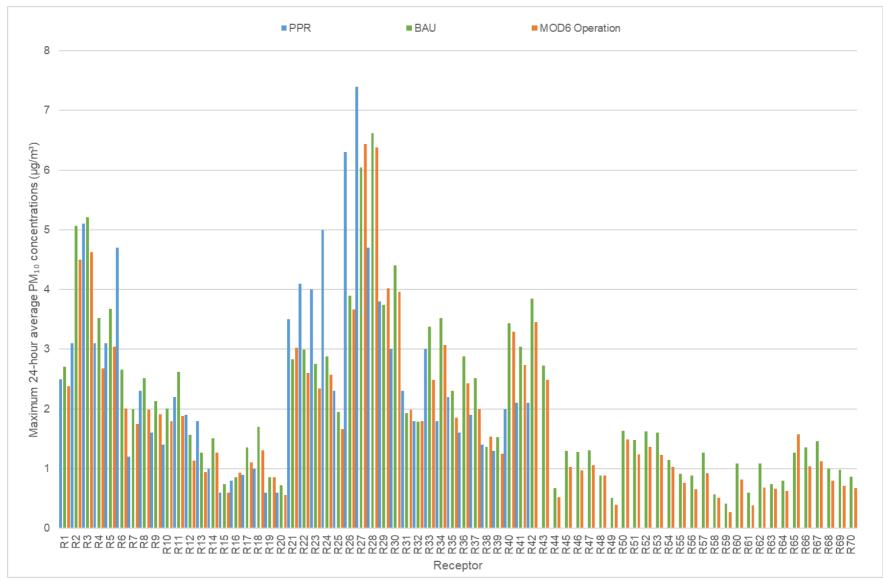



Figure E-7: Maximum 24-hour average PM<sub>10</sub> concentrations for the MOD6 operational scenario, PPR assessment and BAU scenario

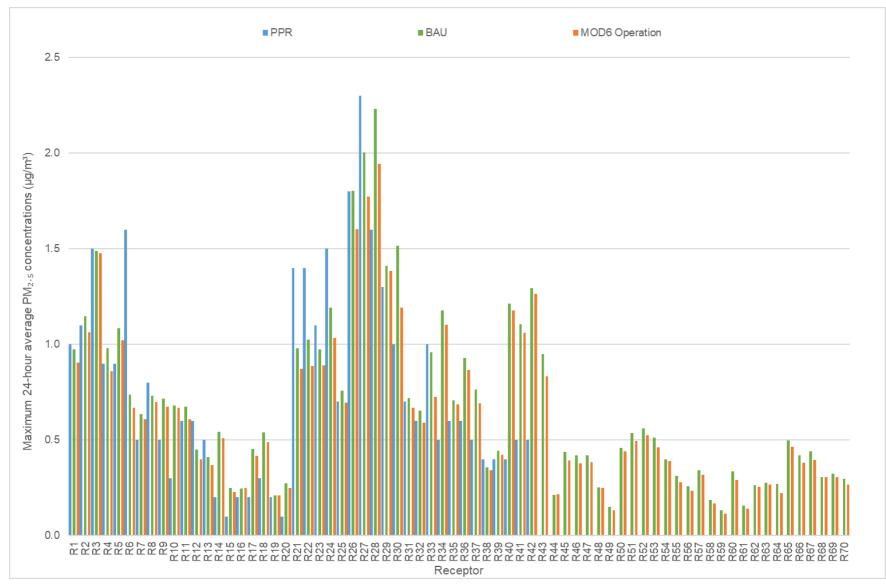



Figure E-8: Maximum 24-hour average PM<sub>2.5</sub> concentrations for the MOD6 operational scenario, PPR assessment and BAU scenario

# APPENDIX FDESCRIPTION OF SENSITIVE RECEPTORS ANDALLOCATEDBACKGROUND MONITORING LOCATION

|             |                                     | -                                     |        |         | -                                                  |          |                                  |
|-------------|-------------------------------------|---------------------------------------|--------|---------|----------------------------------------------------|----------|----------------------------------|
|             | Receptor<br>Name                    |                                       |        | У       | Adopted monitoring location used for<br>background |          |                                  |
| Receptor ID |                                     | Description                           | x      |         | PM <sub>10</sub> , PM <sub>2.5</sub>               | TSP      | Dust and %<br>lead<br>deposition |
| R1          | Piper Street<br>North               | Residence                             | 544110 | 6462598 | TEOM1                                              | TSP-HVAS | DG5                              |
| R2          | Piper Street<br>Central             | Southern<br>Cross Care<br>(St Anne's) | 543763 | 6462312 | TEOM1                                              | TSP-HVAS | DG5                              |
| R3          | Eyre Street<br>North                | Residence                             | 543555 | 6462322 | TEOM1                                              | TSP-HVAS | DG5                              |
| R4          | Eyre Street<br>Central              | Residence                             | 543324 | 6462003 | TEOM1                                              | TSP-HVAS | DG5                              |
| R5          | Eyre Street<br>South                | Residence                             | 543140 | 6461859 | TEOM1                                              | TSP-HVAS | DG5                              |
| R6          | South Road                          | Residence                             | 542833 | 6462000 | TEOM1                                              | TSP-HVAS | DG5                              |
| R7          | Carbon<br>Lane                      | Residence                             | 542604 | 6462718 | TEOM2                                              | TSP-HVAS | DG1                              |
| R8          | Old South<br>Road                   | Residence                             | 542923 | 6462744 | TEOM2                                              | TSP-HVAS | DG1                              |
| R9          | South Rd                            | RSPCA                                 | 542926 | 6463052 | TEOM2                                              | TSP-HVAS | DG2                              |
| R10         | Cnr Garnet<br>& Blende<br>Streets   | Duke of<br>Cornwall<br>Park           | 543158 | 6463633 | TEOM2                                              | TSP-HVAS | DG2                              |
| R11         | 29<br>Comstock<br>Street            | Alma Bugdli<br>Pre-school             | 543150 | 6461692 | TEOM1                                              | TSP-HVAS | DG5                              |
| R12         | Cnr Patton<br>& Comstock<br>Streets | Playtime<br>Pre-school                | 543587 | 6461665 | TEOM1                                              | TSP-HVAS | DG7                              |
| R13         | Comstock<br>Street                  | Alma<br>Primary<br>School             | 543631 | 6461566 | TEOM1                                              | TSP-HVAS | DG7                              |
| R14         | 76 Garnet<br>Street                 | Broken Hill<br>High School            | 543019 | 6463916 | TEOM2                                              | TSP-HVAS | DG2                              |
| R15         | 176 Thomas<br>St                    | Broken Hill<br>Base<br>Hospital       | 543133 | 6465290 | TEOM2                                              | TSP-HVAS | DG2                              |
| R16         | Chapple<br>Street                   | N. Broken<br>Hill Primary<br>School   | 544570 | 6465713 | TEOM2                                              | TSP-HVAS | DG2                              |
| R17         | Mica Street                         | Broken Hill<br>Public<br>School       | 543245 | 6464378 | TEOM2                                              | TSP-HVAS | DG2                              |

|             | Receptor<br>Name      | Description                           |        |         | Adopted monitoring location used for<br>background |          |                                  |
|-------------|-----------------------|---------------------------------------|--------|---------|----------------------------------------------------|----------|----------------------------------|
| Receptor ID |                       |                                       | x      | У       | PM <sub>10</sub> , PM <sub>2.5</sub>               | TSP      | Dust and %<br>lead<br>deposition |
| R18         | 2 Patton<br>Street    | Rainbow<br>Pre-school                 | 542815 | 6461151 | TEOM1                                              | TSP-HVAS | DG7                              |
| R19         | Murton<br>Street      | Willyama<br>High School               | 544599 | 6466299 | TEOM2                                              | TSP-HVAS | DG2                              |
| R20         | 470 Morgan<br>Street  | Morgan<br>Street<br>Primary<br>School | 543420 | 6465782 | TEOM2                                              | TSP-HVAS | DG2                              |
| R21         | Eyre Street<br>North  | Residence                             | 544212 | 6462762 | TEOM1                                              | TSP-HVAS | DG5                              |
| R22         | Eyre Street<br>North  | Residence                             | 544288 | 6462828 | TEOM1                                              | TSP-HVAS | DG5                              |
| R23         | Eyre Street<br>North  | Residence                             | 544456 | 6462974 | TEOM1                                              | TSP-HVAS | DG5                              |
| R24         | Eyre Street<br>North  | Residence                             | 544591 | 6463090 | TEOM1                                              | TSP-HVAS | DG5                              |
| R25         | Lawton<br>Street      | Essential<br>Water Tank               | 544460 | 6462723 | TEOM1                                              | TSP-HVAS | DG5                              |
| R26         | Holten Drive          | Mawsons<br>Quarry<br>offices          | 544723 | 6463208 | TEOM1                                              | TSP-HVAS | DG5                              |
| R27         | Proprietary<br>Square | Residence                             | 544666 | 6463926 | TEOM2                                              | TSP-HVAS | DG6                              |
| R28         | Proprietary<br>Square | British Flats<br>Playground           | 544731 | 6463988 | TEOM2                                              | TSP-HVAS | DG6                              |
| R29         | Iodide Street         | Residence                             | 544592 | 6464026 | TEOM2                                              | TSP-HVAS | DG6                              |
| R30         | lodide Street         | Perilya<br>Social Club                | 544728 | 6464112 | TEOM2                                              | TSP-HVAS | DG6                              |
| R31         | Crystal<br>Street     | Residence                             | 544503 | 6464328 | TEOM2                                              | TSP-HVAS | DG6                              |
| R32         | Crystal<br>Street     | Residence                             | 544637 | 6464415 | TEOM2                                              | TSP-HVAS | DG6                              |
| R33         | Brownes<br>Shaft      | Brownes<br>Shaft<br>Residence         | 545231 | 6464450 | TEOM2                                              | TSP-HVAS | DG4                              |
| R34         | Crystal<br>Street     | Residence                             | 543572 | 6463746 | TEOM2                                              | TSP-HVAS | DG2                              |
| R35         | Crystal<br>Street     | Residence                             | 543748 | 6463873 | TEOM2                                              | TSP-HVAS | DG2                              |
| R36         | Crystal<br>Street     | Nachiapan<br>Surgery                  | 543934 | 6464002 | TEOM2                                              | TSP-HVAS | DG2                              |

|             | Receptor<br>Name                        | Description                       | x      | у       | Adopted monitoring location used for<br>background |          |                                  |
|-------------|-----------------------------------------|-----------------------------------|--------|---------|----------------------------------------------------|----------|----------------------------------|
| Receptor ID |                                         |                                   |        |         | PM <sub>10</sub> , PM <sub>2.5</sub>               | TSP      | Dust and %<br>lead<br>deposition |
| R37         | Crystal<br>Street                       | Residence                         | 544127 | 6464141 | TEOM2                                              | TSP-HVAS | DG2                              |
| R38         | Gypsum<br>Street                        | Residence                         | 542459 | 6462467 | TEOM2                                              | TSP-HVAS | DG1                              |
| R39         | Gypsum<br>Street                        | Residence                         | 542512 | 6462581 | TEOM2                                              | TSP-HVAS | DG1                              |
| R40         | Silver City<br>Hwy                      | Coles<br>Supermarket              | 543099 | 6463321 | TEOM2                                              | TSP-HVAS | DG2                              |
| R41         | Silver City<br>Hwy                      | Residence                         | 543249 | 6463439 | TEOM2                                              | TSP-HVAS | DG2                              |
| R42         | Silver City<br>Hwy                      | Residence                         | 543394 | 6463551 | TEOM2                                              | TSP-HVAS | DG2                              |
| R43         | Proprietary<br>Square                   | Bowling<br>Green                  | 544670 | 6464213 | TEOM2                                              | TSP-HVAS | DG6                              |
| R44         | Cnr Duff and<br>South<br>Streets        | Duff Street<br>Park<br>Playground | 544186 | 6461103 | TEOM1                                              | TSP-HVAS | DG7                              |
| R45         | 141 Patton<br>Street                    | Patton Park                       | 543670 | 6461675 | TEOM1                                              | TSP-HVAS | DG7                              |
| R46         | Wentworth<br>Street                     | ZincLakes                         | 542637 | 6460861 | TEOM1                                              | TSP-HVAS | DG7                              |
| R47         | Cnr Beryl<br>and<br>Sulphide<br>Streets | Sturt Park<br>Playground          | 543716 | 6464336 | TEOM2                                              | TSP-HVAS | DG2                              |
| R48         | Queen<br>Elizabeth<br>Park              | Playground                        | 544457 | 6465505 | TEOM2                                              | TSP-HVAS | DG2                              |
| R49         | Aquatic<br>Centre                       | Playground                        | 544257 | 6466375 | TEOM2                                              | TSP-HVAS | DG2                              |
| R50         | 229 Beryl<br>Street                     | Aruma<br>Lodge                    | 543782 | 6464178 | TEOM2                                              | TSP-HVAS | DG6                              |
| R51         | 1 Braceman<br>St                        | Eureka<br>Shorty<br>O'Neill       | 542870 | 6463609 | TEOM2                                              | TSP-HVAS | DG2                              |
| R52         | 1 - 40<br>Blende St                     | Con Crowley<br>Village            | 542900 | 6463529 | TEOM2                                              | TSP-HVAS | DG2                              |
| R53         | 168 Thomas<br>St                        | War Vets<br>Retirement<br>Living  | 542787 | 6461088 | TEOM1                                              | TSP-HVAS | DG7                              |
| R54         | 192 Lane                                | Sacred                            | 543282 | 6464626 | TEOM2                                              | TSP-HVAS | DG6                              |

| Receptor ID | Receptor<br>Name                   | Description                            | x      | У       | Adopted monitoring location used for<br>background |          |                                  |
|-------------|------------------------------------|----------------------------------------|--------|---------|----------------------------------------------------|----------|----------------------------------|
|             |                                    |                                        |        |         | PM <sub>10</sub> , PM <sub>2.5</sub>               | TSP      | Dust and %<br>lead<br>deposition |
|             | Street                             | Heart Parish<br>Primary<br>School      |        |         |                                                    |          |                                  |
| R55         | 106 Wills<br>Street                | Railwaytown<br>Public<br>School        | 541663 | 6462761 | TEOM1                                              | TSP-HVAS | DG2                              |
| R56         | 185 Rakow<br>Street                | Burke Ward<br>Public<br>School         | 541956 | 6463856 | TEOM2                                              | TSP-HVAS | DG2                              |
| R57         | Gypsum<br>Street                   | AJ Keast<br>Park                       | 542316 | 6463028 | TEOM1                                              | TSP-HVAS | DG2                              |
| R58         | 367 Kaolin<br>Street               | Picton Oval                            | 542418 | 6465095 | TEOM2                                              | TSP-HVAS | DG2                              |
| R59         | Broken Hill<br>Airport             | Flying<br>Doctors<br>Medical<br>Centre | 544243 | 6459543 | TEOM1                                              | TSP-HVAS | DG7                              |
| R60         | 121 Bagot<br>Street                | Busy kids<br>child care<br>centre      | 544409 | 6465165 | TEOM2                                              | TSP-HVAS | DG6                              |
| R61         | Cnr Slag<br>and Gaffney<br>Streets | Residence                              | 541538 | 6461826 | TEOM1                                              | TSP-HVAS | DG1                              |
| R62         | Slag Street                        | Residence                              | 542174 | 6462135 | TEOM1                                              | TSP-HVAS | DG1                              |
| R63         | Williams<br>Street                 | Memorial<br>Oval                       | 542368 | 6464205 | TEOM2                                              | TSP-HVAS | DG1                              |
| R64         | Silver Street                      | Jubilee Oval                           | 545067 | 6465474 | TEOM2                                              | TSP-HVAS | DG4                              |
| R65         | Argent Lane                        | Residence                              | 544584 | 6464584 | TEOM2                                              | TSP-HVAS | DG6                              |
| R66         | Blende<br>Street                   | O'Neill Park<br>Soccer<br>Grounds      | 544241 | 6464857 | TEOM2                                              | TSP-HVAS | DG6                              |
| R67         | Blende<br>Street                   | Cricket<br>Grounds                     | 544319 | 6464830 | TEOM2                                              | TSP-HVAS | DG6                              |
| R68         | Whitaker<br>Street                 | Residence                              | 544485 | 6462026 | TEOM1                                              | TSP-HVAS | DG7                              |
| R69         | King Street                        | Residence                              | 544751 | 6462012 | TEOM1                                              | TSP-HVAS | DG7                              |
| R70         | Talbot<br>Street                   | Lamb Oval                              | 543879 | 6461328 | TEOM1                                              | TSP-HVAS | DG7                              |



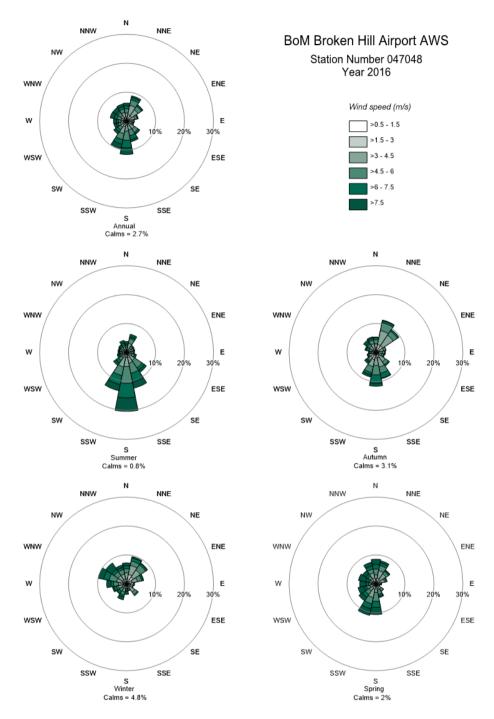



Figure G.1: Annual and seasonal wind roses for Broken Hill Airport (2016)



Figure G.2: Annual and seasonal wind roses for Broken Hill Airport (2017)

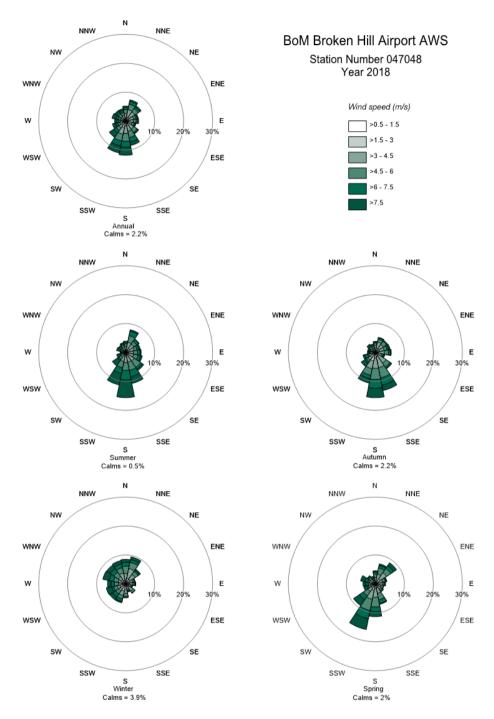



Figure G.3: Annual and seasonal wind roses for Broken Hill Airport (2018)

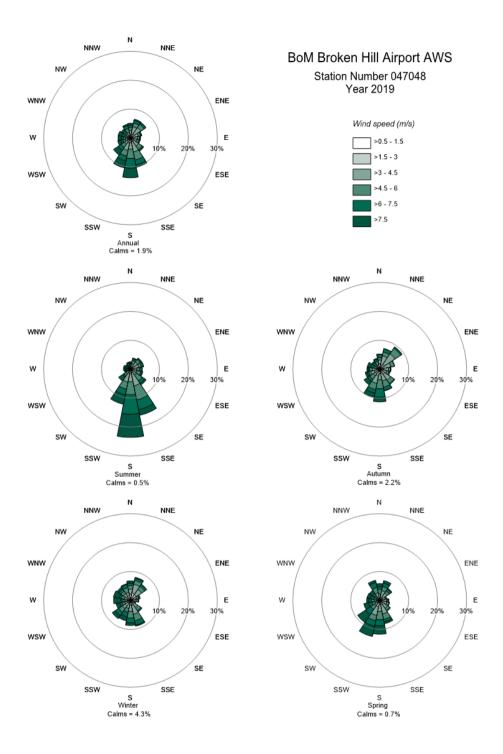



Figure G.4: Annual and seasonal wind roses for Broken Hill Airport (2019)

### APPENDIX H MONITORING DATA REVIEW

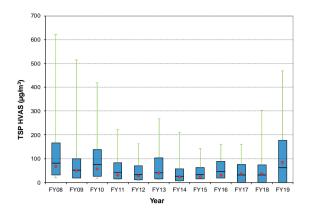



Figure H-1: TSP concentration measured by HVAS

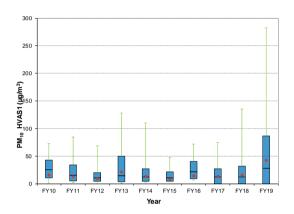



Figure H-3:  $PM_{10}$  concentrations measured by HVAS1

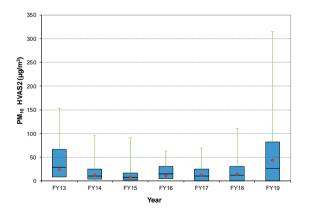



Figure H-5:  $PM_{10}$  concentrations measured by HVAS2

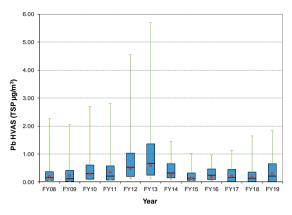



Figure H-2: Pb concentration measured by HVAS

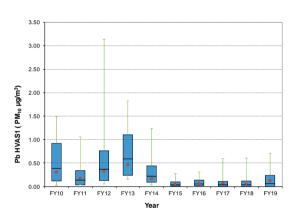



Figure H-4: Pb concentrations measured by HVAS1

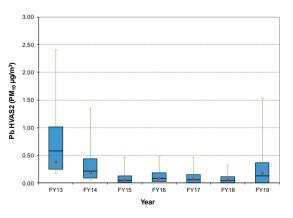



Figure H-6: Pb concentrations measured by HVAS2

Note: The extents of the box denote the 25th and 75th percentile of the data and the median is the line across the box. The mean is the red dot and the green error bars are the maximum and minimum values.

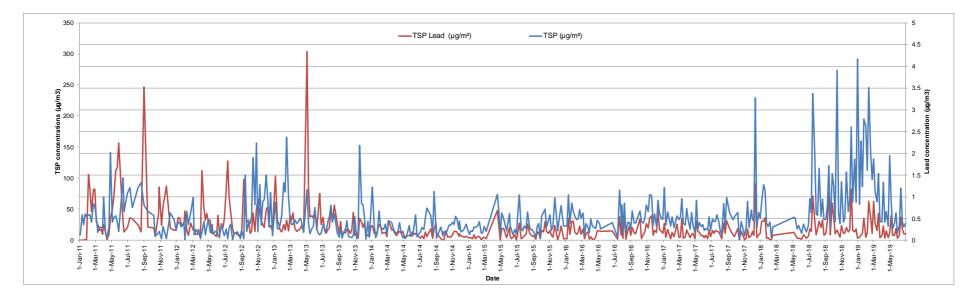



Figure H-7: Time series of HVAS data for TSP and Pb concentrations



Figure H-8: Time series of HVAS1 data for  $PM_{10}$  and Pb concentrations

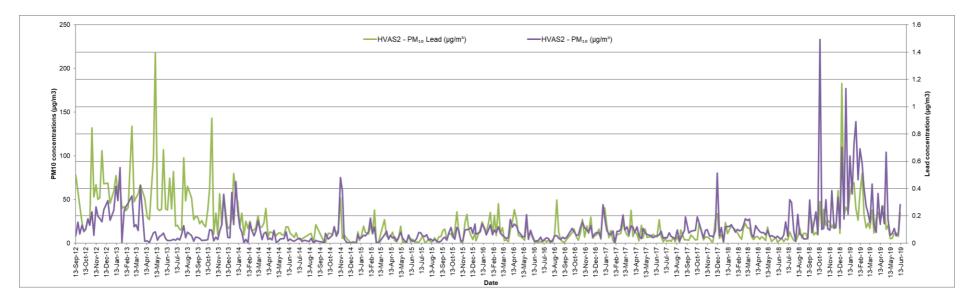



Figure H-9: Time series of HVAS2 data for  $PM_{10}$  and Pb concentrations

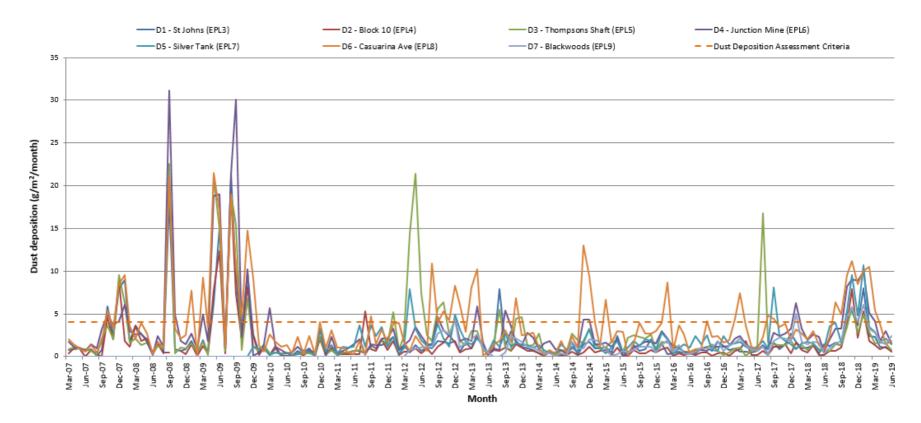



Figure H-10: Time series of dust deposition gauges for deposited dust

Note: October 2008 a value of 60.1 g/m<sup>2</sup>/month was recorded at dust gauge D2 (Block 10). However, for clarity, this outlier value is not shown in the above figure

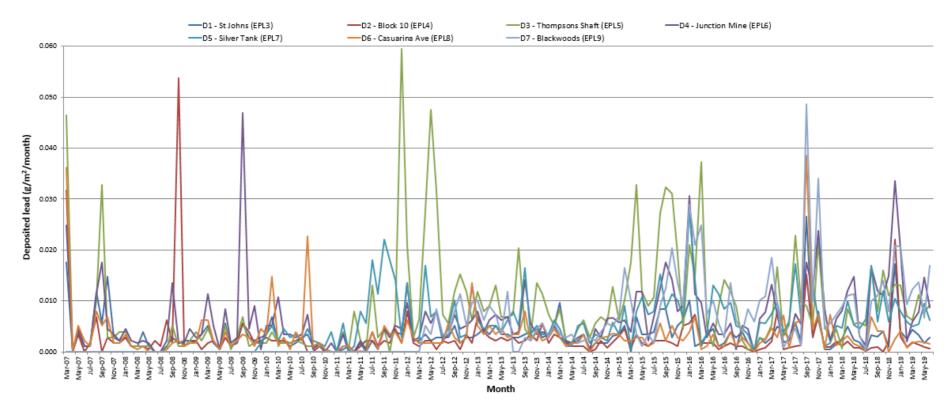



Figure H-11: Time series of lead deposition from the dust deposition gauges

Note: In September 2017, a value of 0.401 g/m<sup>2</sup>/month (lead) was recorded at dust gauge D5 (Silver Tank). However, for clarity, this outlier value is not shown in the above figure.

**APPENDIX I CONTOUR PLOTS** 

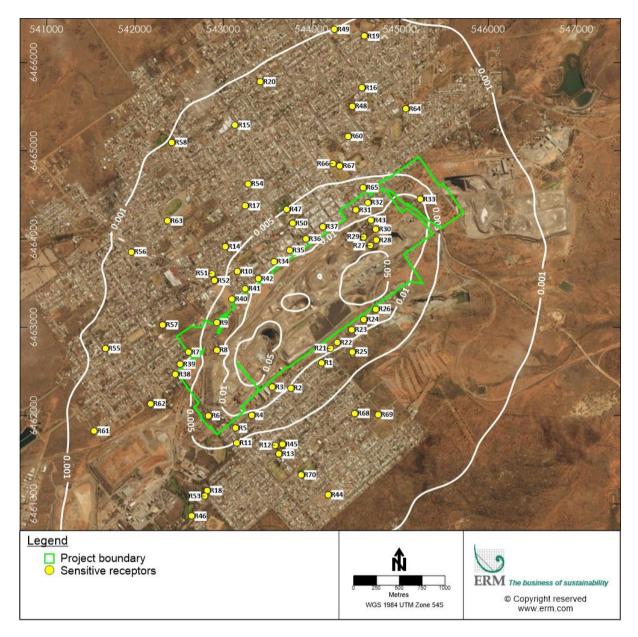



Figure I-1: Predicted incremental annual average lead concentrations (µg/m<sup>3</sup>) for the BAU scenario

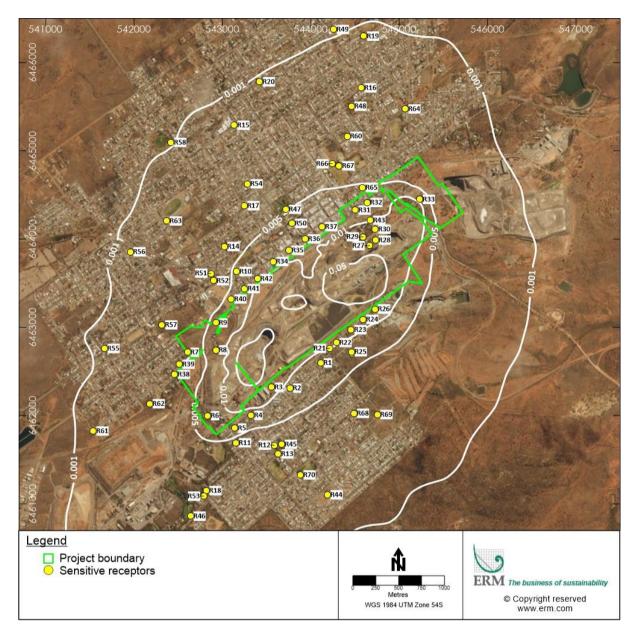



Figure I-2: Predicted incremental annual average lead concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

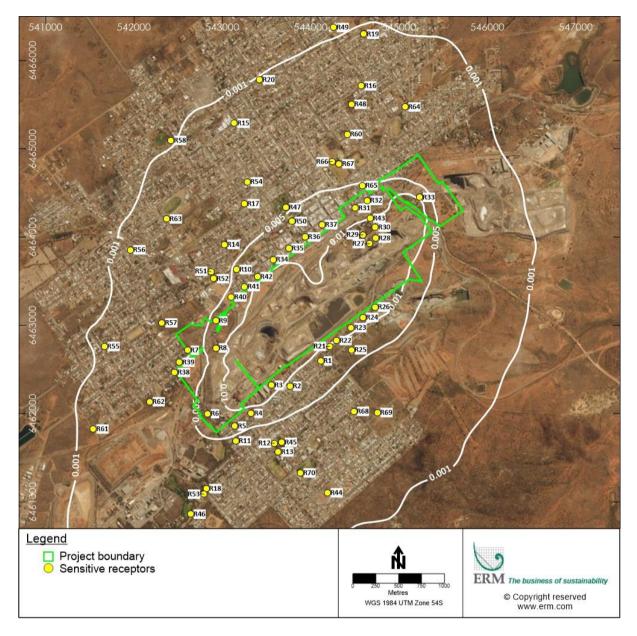



Figure I-3: Predicted incremental annual average lead concentrations (µg/m<sup>3</sup>) for MOD6 operation scenario

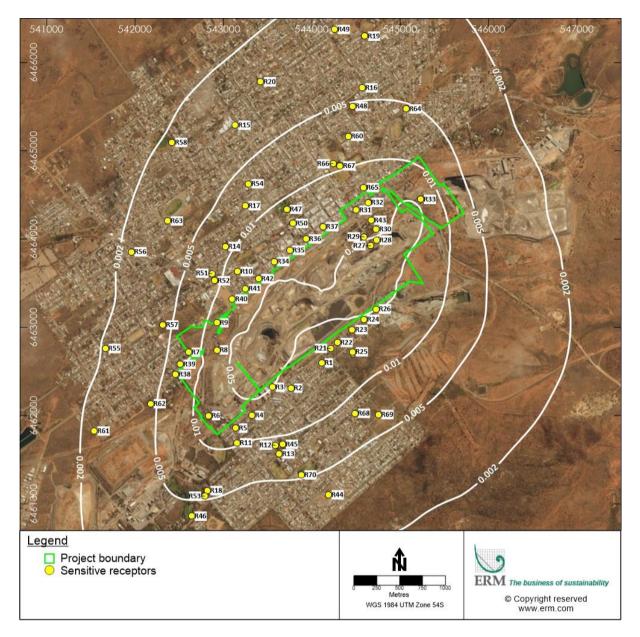



Figure I-4: Predicted annual average lead deposition (g/m²/year) for the BAU scenario

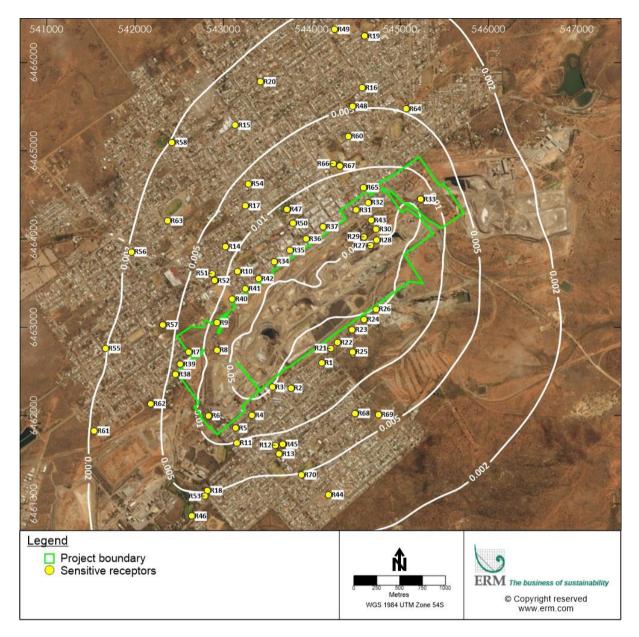



Figure I-5: Predicted annual average lead deposition (g/m²/year) for MOD6 construction scenario

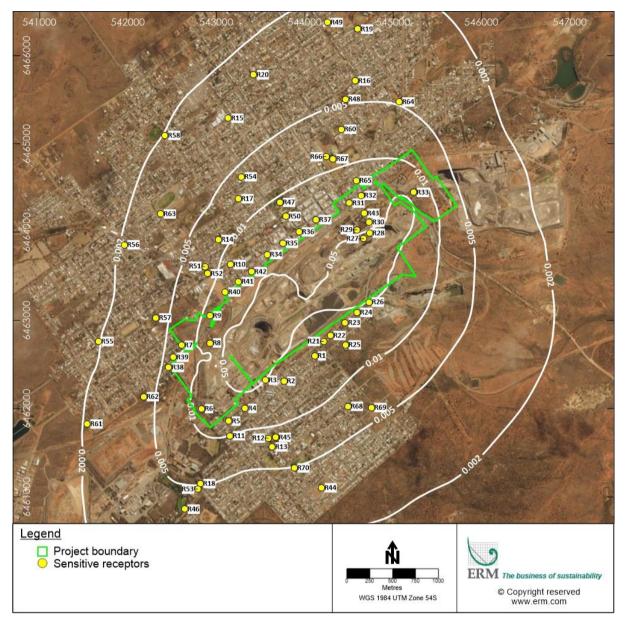



Figure I-6: Predicted annual average lead deposition (g/m²/year) for MOD6 operational scenario

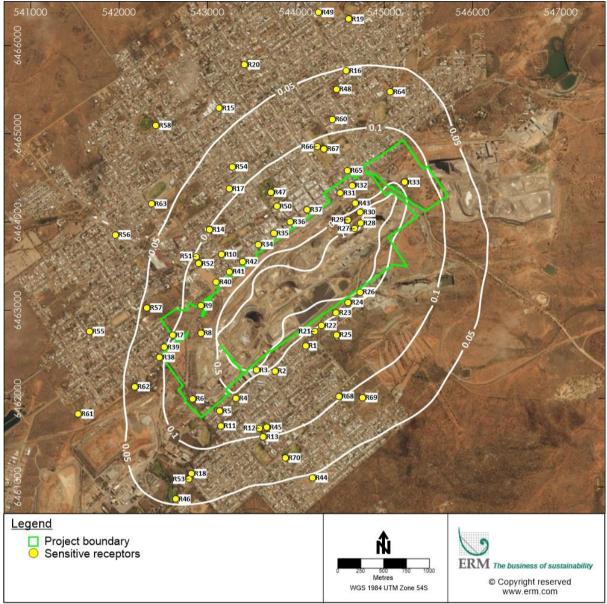



Figure I-7: Predicted incremental annual average TSP concentrations (µg/m³) for the BAU scenario

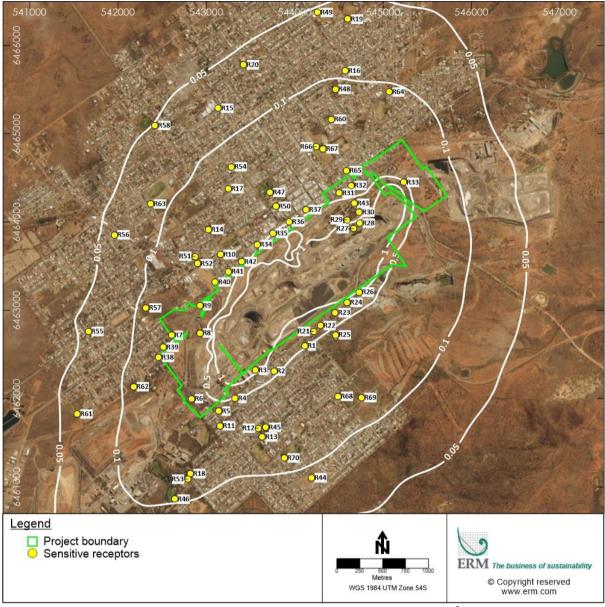



Figure I-8: Predicted incremental annual average TSP concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

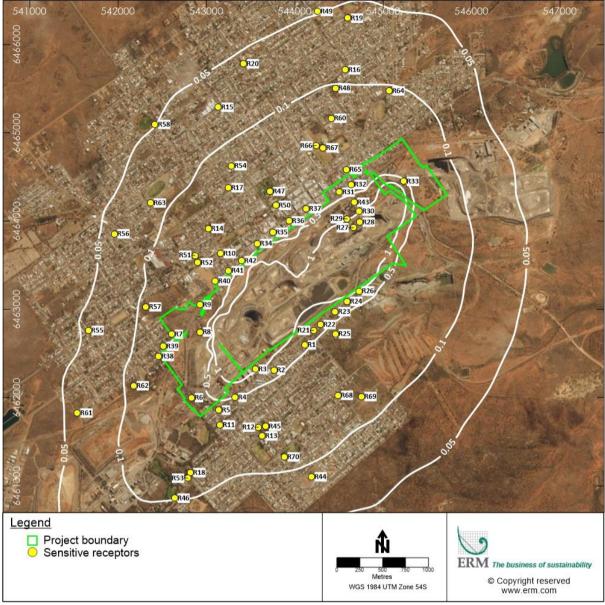



Figure I-9: Predicted incremental annual average TSP concentrations (µg/m<sup>3</sup>) for MOD6 operational scenario

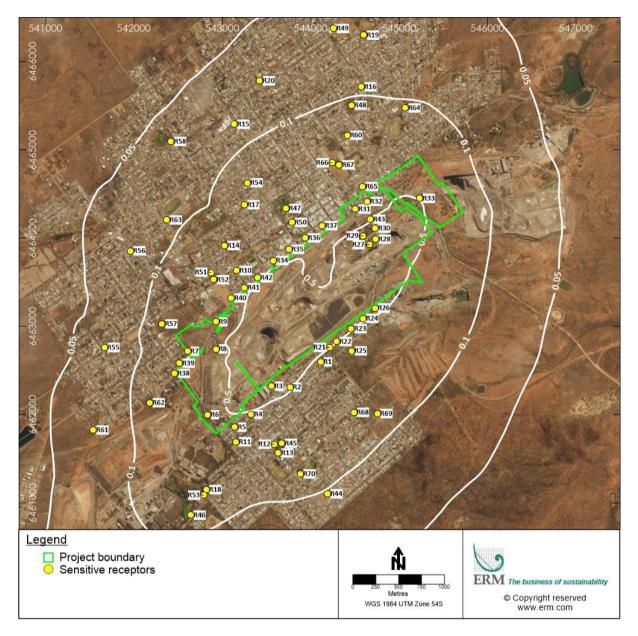



Figure I-10: Predicted incremental annual average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) for the BAU scenario

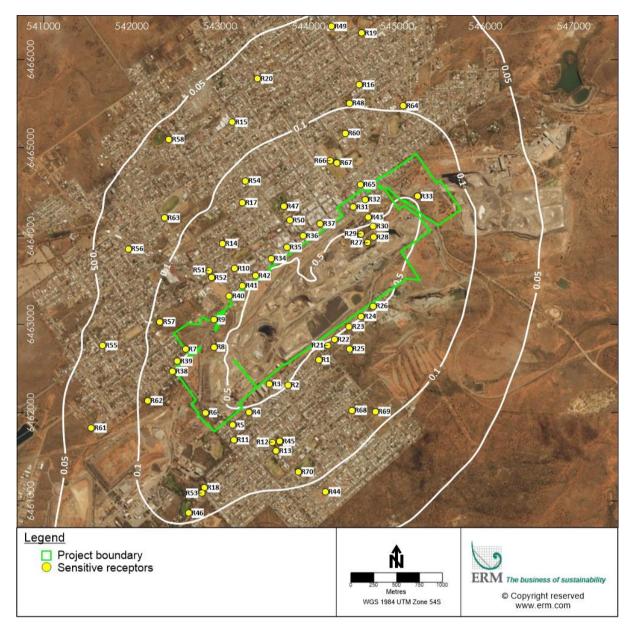



Figure I-11: Predicted incremental annual average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

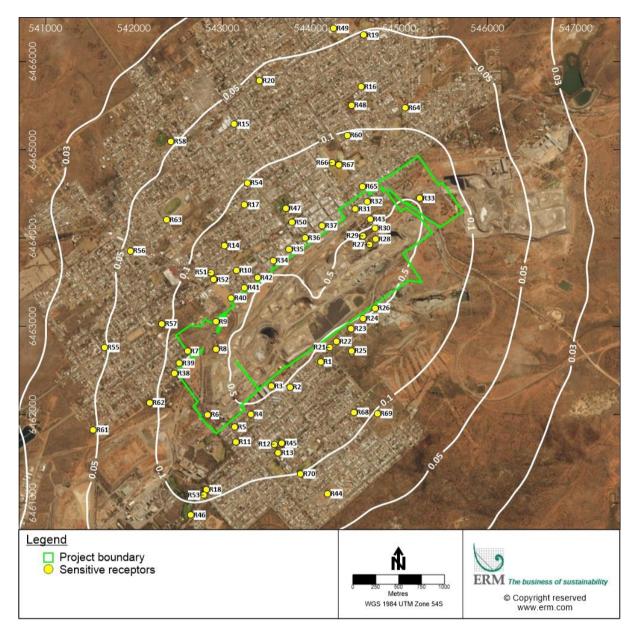



Figure I-12: Predicted incremental annual average  $PM_{10}$  concentrations ( $\mu g/m^3$ ) for MOD6 operation scenario

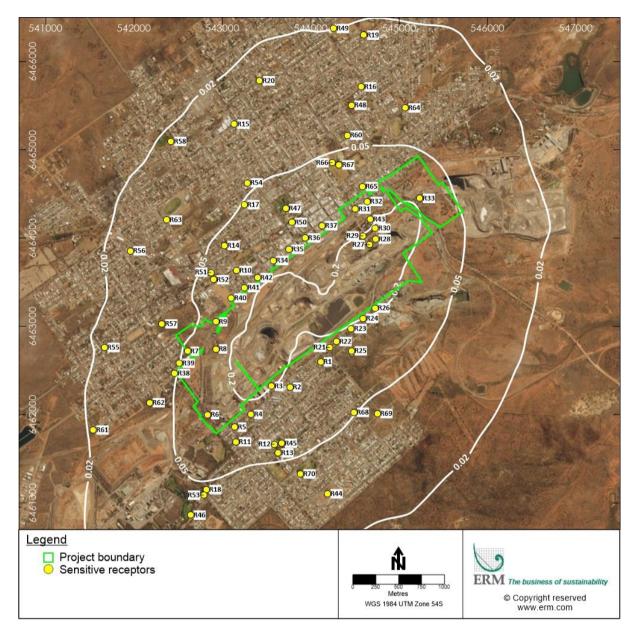



Figure I-13: Predicted incremental annual average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) the BAU scenario

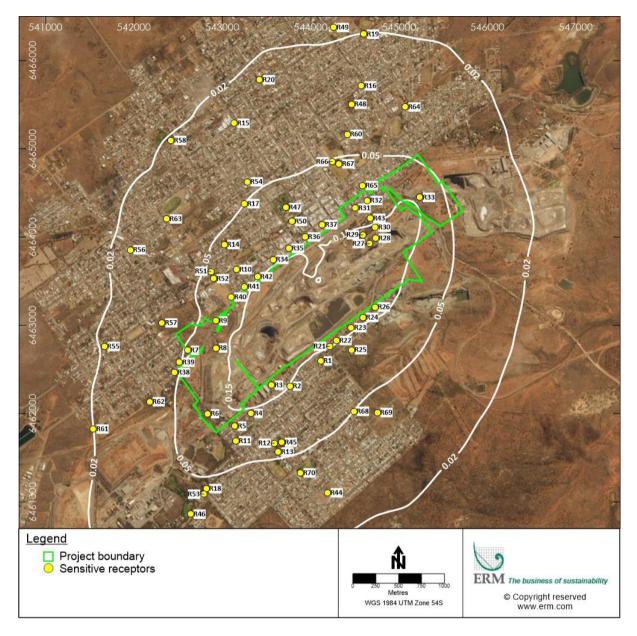



Figure I-14: Predicted incremental annual average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

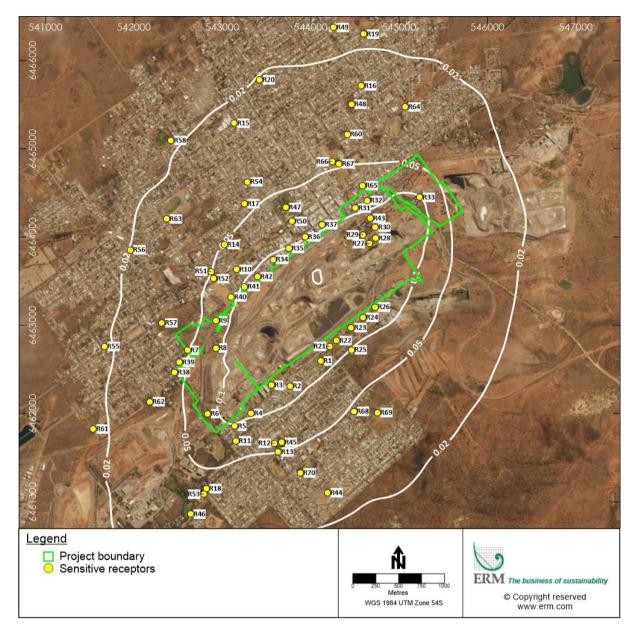



Figure I-15: Predicted incremental annual average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for MOD6 operational scenario

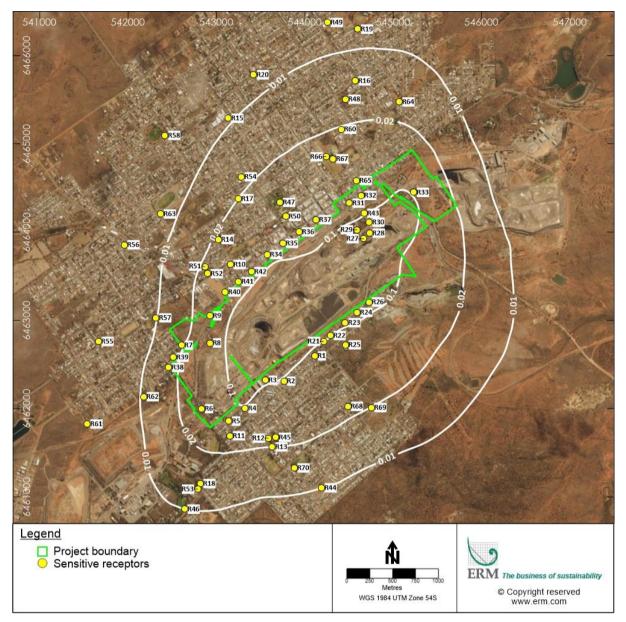



Figure I-16: Predicted incremental monthly average deposited dust (g/m²/month) for the BAU scenario

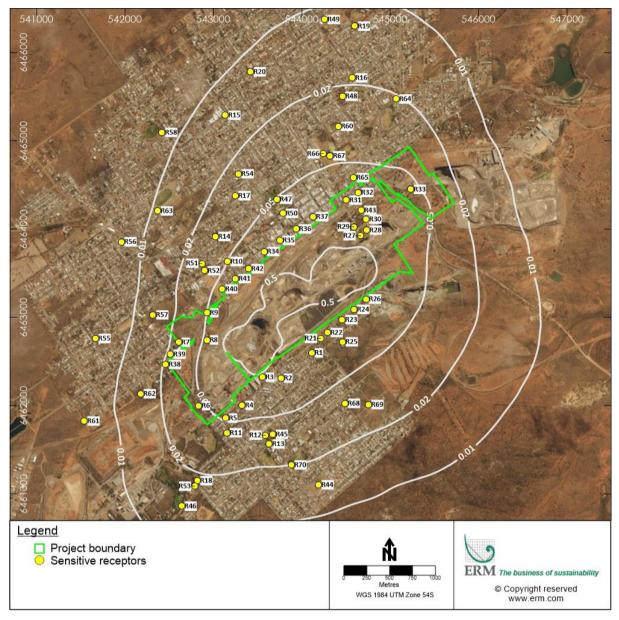



Figure I-17: Predicted incremental monthly average deposited dust (g/m²/month) for MOD6 construction scenario

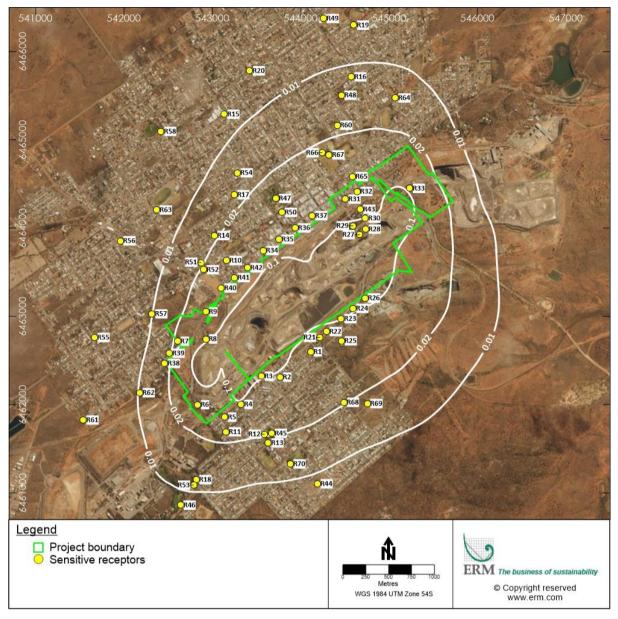



Figure I-18: Predicted incremental monthly average deposited dust (g/m²/month) for MOD6 operational scenario

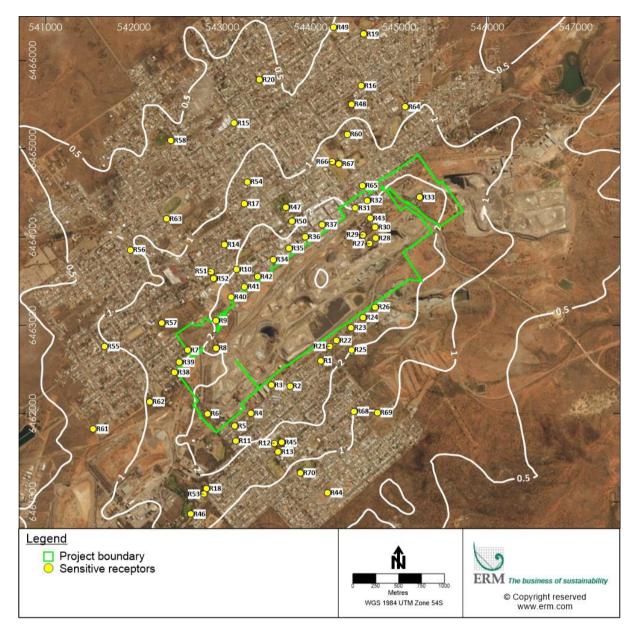



Figure I-19: Predicted incremental maximum 24-hour average  $PM_{10}$  concentrations ( $\mu g/m^3$ ) for the BAU scenario

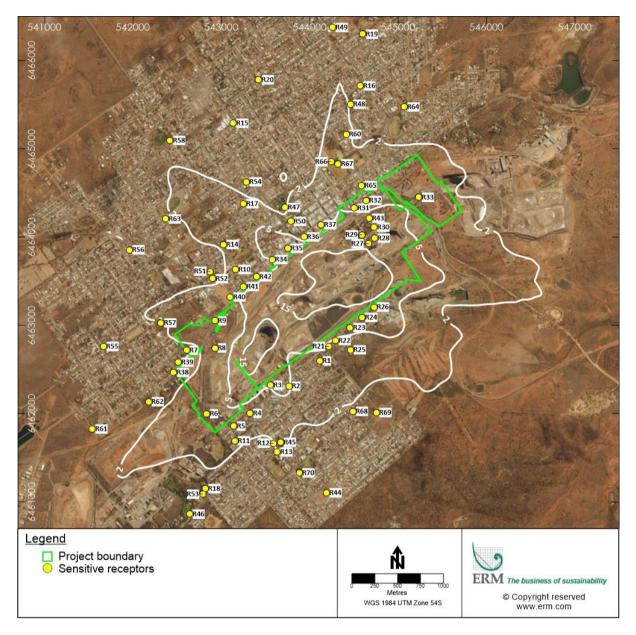



Figure I-20: Predicted incremental maximum 24-hour average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

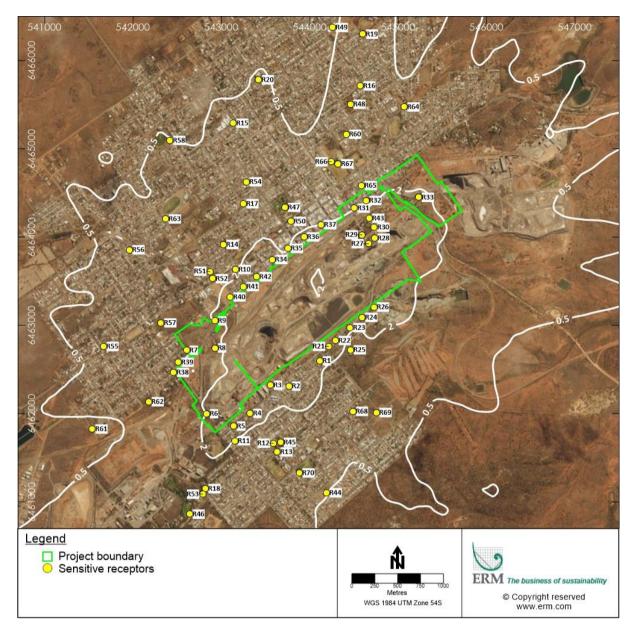



Figure I-21: Predicted incremental maximum 24-hour average PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) for MOD6 operational scenario

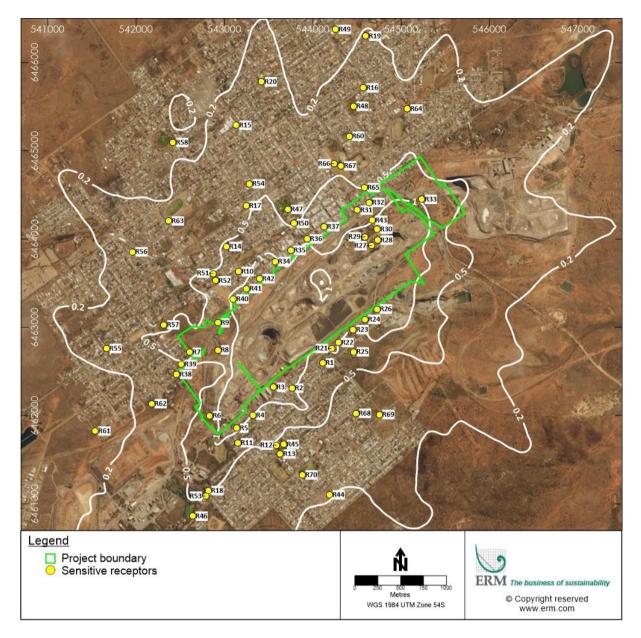



Figure I-22: Predicted incremental maximum 24-hour average  $PM_{2.5}$  concentrations ( $\mu$ g/m<sup>3</sup>) for the BAU scenario

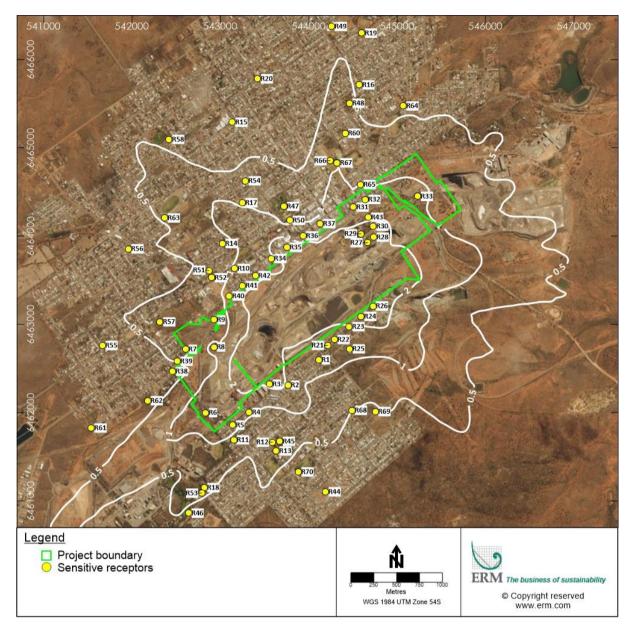



Figure I-23: Predicted incremental maximum 24-hour average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for MOD6 construction scenario

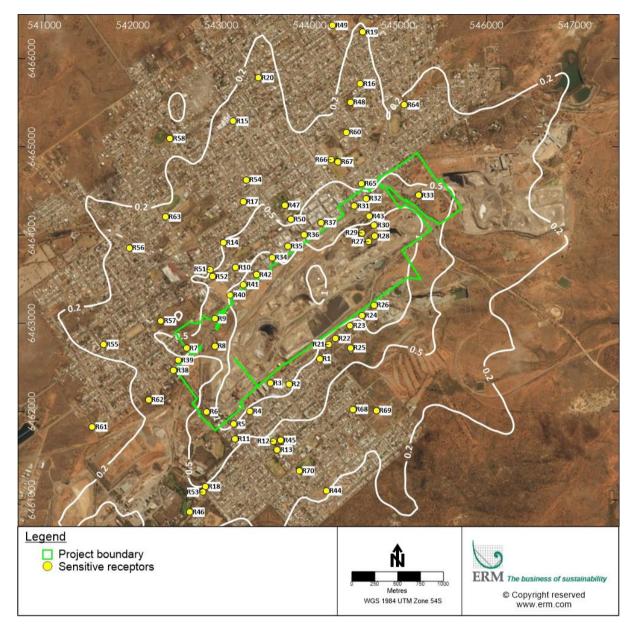



Figure I-24: Predicted incremental maximum 24-hour average PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) for MOD6 operational scenario

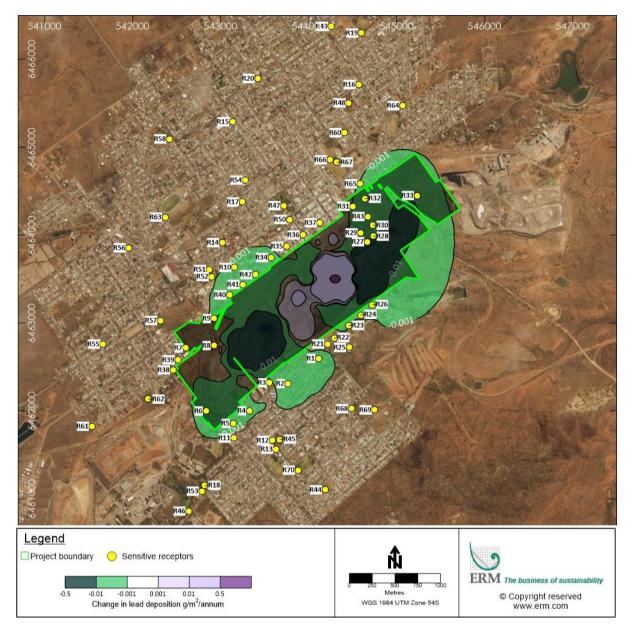



Figure I-25: Change in annual average lead deposition for MOD6 construction scenario minus the MOD4 scenario (g/m²/annum)

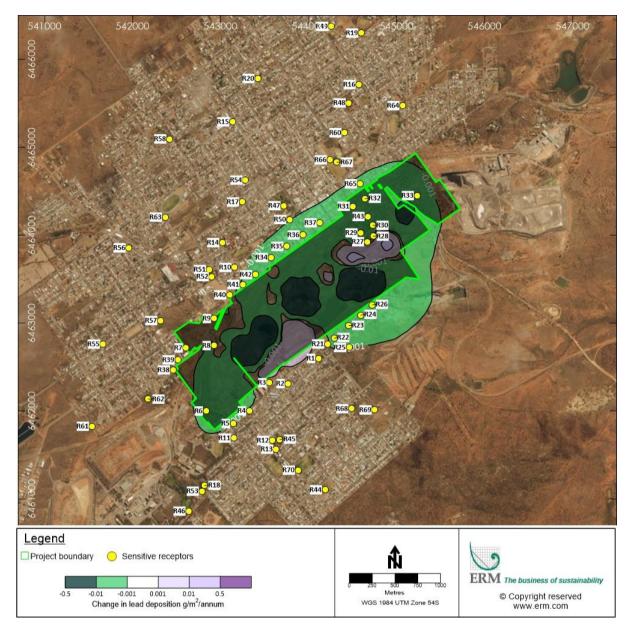



Figure I-26: Change in annual average lead deposition for MOD6 operational scenario minus the BAU scenario (g/m²/annum)

## ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada Chile China Colombia France Germany Guyana Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique Myanmar

The Netherlands New Zealand Norw ay Panama Peru Poland Portugal Puerto Rico Romania Russia Singapore South Africa South Korea Spain Sw eden Sw itzerland Taiw an Tanzania Thailand UK US Vietnam

## ERM Sydney

Level 15, 309 Kent St Sydney NSW 2000

T: +61 2 8584 8888

www.erm.com