www.groundcontrolengineering.com.au

26 July 2021

Giorgio Dall'armi General Manager Broken Hill Operations (BHOP) – Rasp Mine

GEOTECHNICAL ASSESSMENT OF THE RASP MINE BOX CUT

Dear Giorgio,

Please find Ground Control Engineering's (GCE) report presenting a geotechnical assessment and slope design parameters for a proposed box cut for the Rasp Mine, Broken Hill NSW.

We trust that this report meets your requirements. Should you require further clarification, please do not hesitate to contact the undersigned.

Yours sincerely, GROUND CONTROL ENGINEERING PTY LTD

Cameron Tucker Principal Geotechnical Engineer M 0400 449 845 E <u>ctucker@groundcontrolengineering.com.au</u>

Executive summary

Ground Control Engineering Pty Ltd (GCE) was commissioned by Broken Hill Operations (BHOP) to undertake a geotechnical assessment of a proposed box cut to replace the current access to the Rasp underground mine, currently situated at the base of the Kintore open pit.

GCE have completed a geotechnical assessment to develop slope design parameters for the box cut and provided preliminary ground support design requirements for the portal batter and upper sections of the decline linking the boxcut with the current Rasp underground workings.

The location for the boxcut was selected by BHOP based on operational factors. The location sites the boxcut excavation in historic surface waste rock and backfill material placed during the mining of the nearby historic BHP and Blackwood open pits. The boxcut location is also near historic underground, sand-filled workings., The location of the old workings has been estimated using original survey mining plans. The preferred location for the boxcut does not intersect the known underground workings apart from the Wilson and Darling Shafts located on what will be the western wall of the boxcut. These shafts originally connected the underground workings to the surface; however, it is understood these shafts were filled after abandonment. A known limitation with the underground historic data is accuracy and completeness of the available records. Investigative methods including probe hole drilling in the vicinity of the shafts and review of historic information is required.

Box cut slope design

Four geotechnical units (FILL, WEATHERED, TRANSITION and FRESH) were defined from geotechnical logging, and slope design parameters determined by empirical design and numerical modelling methods.

The upper portion of the box cut will be excavated in the FILL unit deposited as waste rock and backfill material from previous mining. The strength of this material is defined by its level of compaction, drainage characteristics and angle of repose. There are no records regarding the composition of the FILL unit and is assumed to be homogenous with respect to material properties for the purpose of this assessment.

The lower portion of the boxcut will be excavated in weathered rock (WEATHERED unit). The WEATHERED unit describes rock in a state of weathering ranging from extremely weathered to highly weathered with pervasive fracturing. The strength of the WEATHERED unit is variable, ranging from very low strength to low strength rock.

Slope design parameters for the box cut slopes are provided in the table below.

Bench Number	Geotechnical unit	Maximum batter angle	Maximum batter height in material	Bench width	Maximum slope angle in material	Maximum slope height
1	Fill	35°	10m	10m	29°	18m
2	FILL / WEATHERED CONTACT	40°	10m	10m	NA	10m
3	WEATHERED	54°	10m	10m	34°	16.5m

Surface erosion

The annual rainfall in Broken Hill is less than 250mm per annum. Long term erosion of the boxcut batters and berms is not expected to compromise the stability of the boxcut slopes apart from minor narrowing of the berms and the forming of erosion channels on the batter slopes in FILL unit. Broken Hill occasionally experiences high intensity rainfall events which may result in increased boxcut slope erosion. Measures to control long term erosion should be adopted by Rasp and access to the benches in the FILL unit should be maintained if remedial works are required. The boxcut design incorporates wide berms to account for potential erosion of the berm crests over the longer term, however, erosion protection is recommended for permanently exposed boxcut slopes and benches.

Seismic loading

The Rasp Mine experiences irregular, low level seismic activity in part due to historic and current mining activity in the area. A preliminary assessment of seismic loading on the boxcut slopes was undertaken during this analysis. A peak ground acceleration (PGA) value of 0.15 was applied to the analysis according to the Geoscience Australia NSHA18 hazard map, the map depicts the mean PGA for a 10% probability of exceedance in 50 years. The results of the analysis predict stable boxcut slopes when a seismic coefficient of 0.15g is applied to the model. Such an event is unlikely to trigger failure of the de-watered slopes but should warrant a detailed inspection for possible remediation. Any TARP that is developed for ground conditions for the boxcut should include seismic activity.

Portal batter design

The portal face is expected to be excavated in the WEATHERED unit. Ground conditions are expected to be "very poor" to "poor". GCE recommend that the final portal ground support design and initial decline support design is finalised once the portal batter is established.

Decline design and ground conditions

The decline will commence in the WEATHERED or TRANSITION rock unit, the expected ground conditions for the initial decline development are expected to be "very poor" to "poor", consistent with the assessment of the rock units in this report. Ground conditions are expected to improve as the decline progresses towards less weathered rock units. An improved level of data pertaining to ground conditions along the decline path is recommended to refine the rock mass characterisation information which will facilitate the prediction of ground conditions ahead of the decline face.

The ground conditions for the decline will be managed according to the requirements of the Rasp Principal Hazard Management Plan (PHMP) – Ground or Strata Failure. Adverse ground conditions that fall outside the scope of the PHMP will be managed by exception.

Contents

E۶	ecuti	ve summary	2
	Box	cut slope design	2
	Surfa	ace erosion	3
	Seisr	nic loading	3
	Port	al batter design	3
	Decl	ine design and ground conditions	3
1	I	ntroduction	6
2	S	cope of Work	6
	2.1	Project description	6
	2.2	Boxcut dimensions	8
	2.3	Information sources	8
	2.4	Limitations	9
3	C	Geotechnical data collection	10
	3.1	2018 and 2019 Geotechnical drilling programs	10
4	C	Geotechnical model	12
	4.1	Rock mass quality	13
	4.2	Ground water and surface water	13
5	C	Geotechnical design	13
	5.1	Design criteria	13
	5.2	Empirical assessment	14
	5.3	Slope stability modelling	16
6	F	Portal batter design	18
7	I	nitial decline design	19
	7.1	Decline ground conditions	19
	7.2	Decline ground support	19
8	S	Summary of findings	20
	8.1	Box cut slope design parameters	20
	8.2	Portal face design	21
	8.3	Decline design and ground conditions	21

Figures		
Figure 1	Kintore pit and box cut design outline within existing topography	7
Figure 2	Boxcut design dimensions, plan view and looking west.	8
Figure 3	Existing fill slopes in the boxcut area	9
Figure 4	Wilson and Darling Shaft locations – plan view	
Figure 5	Plan view of diamond drill investigation holes	
Figure 6	Slide model configuration for permanent slopes	16
Figure 7	Detailed model geometry	17
Figure 8	Decline excavation profile for the decline	
Tables		
Table 1	Boxcut design dimensions	8
Table 2:	2018 /2019 Geotechnical drilling program – drill hole details	11
Table 3:	UCS test results from 2018 geotechnical drilling	
Table 4	Triaxial test results from 2018 geotechnical drilling	
Table 5:	Geotechnical units as logged in the drill holes	12
Table 6:	Examples of design criteria for open pit walls	14
Table 7	Core logged based on RMR	14
Table 8:	RMR statistical data for each geotechnical unit	15
Table 10:	MRMR statistical data	15
Table 11:	IRSA using Haines and Terbrugge design chart	15
Table 12:	Material properties for Slide modelling	16
Table 13	Summary of slope design parameters	20

Appendices

Appendix A	Laboratory test results
Appendix B	Slide Model Results
Appendix C	Portal Batter Ground Support Design
Appendix D	Decline Ground Support Designs

1 Introduction

Ground Control Engineering Pty Ltd (GCE) was commissioned by Broken Hill Operations (BHOP) to undertake a geotechnical assessment and provide slope design parameters for a proposed box cut to replace the current access to the Rasp underground mine, currently situated at the base of the Kintore open pit.

The proposed location for the boxcut sites the excavation in historic surface waste rock and backfill material placed during the mining of the nearby BHP and Blackwood open pits. The boxcut location is also near historic underground, sand-filled workings. The location of the old workings has been estimated using historic survey mining plans. The location for the boxcut does not intersect the known underground workings apart from the Wilson and Darling Shafts located on what will be the western wall of the boxcut. These shafts originally connected the underground workings to the surface; however, it is believed that these shafts were filled after abandonment. A known limitation with the underground historic data is accuracy and completeness of the available records. Investigative methods including probe hole drilling in the vicinity of the shafts and review of historic information is required.

2 Scope of Work

The scope of work for this report was based on discussions between GCE and Rasp Mine technical management and comprised the following items:

- 1. Produce a conceptual boxcut design based on the BHOP preferred location.
- 2. Assess the condition of the slopes in the nearby areas to the proposed boxcut location.
- 3. Review of drill core from the geotechnical drilling programs to identify the base of the historic fill material and rock units.
- 4. Geotechnical analyses to define the site geotechnical conditions, determine slope design parameters and provide a ground support guidance for the decline portal.

The results of the 2018 and 2019 geotechnical logging and testing has formed the basis of the following assessment methods undertaken for this report:

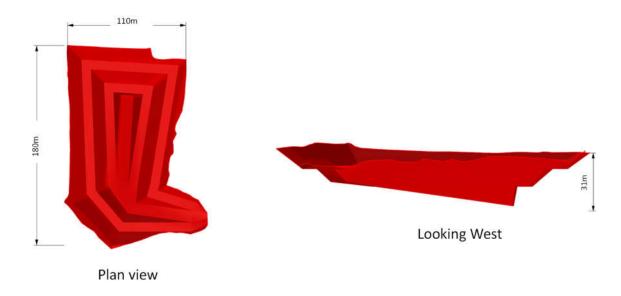
- 1. Empirical analysis of overall wall angles (derived from Rock Mass Rating (RMR) values), from the geotechnical logging of drill holes from the 2018 and 2019 box cut drilling programs.
- 2. Two-dimensional limit equilibrium modelling to assess the Factor of Safety (FOS) of design slope configurations.
- 3. Empirical assessment of anticipated ground conditions for the upper sections of the proposed decline to determine preliminary ground support requirements.

2.1 Project description

Broken Hill Operations (BHOP) operate the Rasp Mine in Broken Hill NSW. The mine is an underground operation situated approximately in the centre of the Broken Hill Line of Lode. The access to the underground mine is via a portal constructed in the base of the Kintore open pit which was completed in the 1991. BHOP plan to convert the Kintore Pit into a tailings facility which will require an alternative access to the underground workings.

Figure 1 shows the location of the current portal location and proposed boxcut excavation

Figure 1 Kintore pit and box cut design outline within existing topography.


2.2 Boxcut dimensions

The proposed boxcut design dimensions are shown in Table 1 and Figure 2. The width of the box cut is constrained by the location of Rasp mine infrastructure on the eastern side of the boxcut and the mine boundary

Table 1 Boxcut design dimensions

Boxcut Dimension	Unit	No
Length	m	180
Width	m	115
Maximum depth	m	31
Excavation volume	m ³	191,000

Figure 2 Boxcut design dimensions, plan view and looking west.

2.3 Information sources

The following reports and data were provided to GCE for this assessment:

Geotechnical logging and testing

- BHOP Geotechnical logs and core photographs from the 2018 and 2019 box cut drilling programs:
 - 2018 Program
 - MLDD 3873
 - MLDD 3874
 - MLDD 3875
 - MLDD 3876
 - MLDD 3877
 - MLDD 3878
 - MLDD 3879

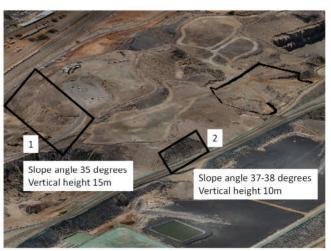
2019 Program

.

- MLDD4132
- MLDD4133
- MLDD4134
- MLDD4135
- MLDD4136
- MLDD4137
- MLDD4138MLDD4139
- MLDD4139
 MLDD4140
- Trilab, 2018, 4 triaxial test results (3 consolidated-undrained (CU) triaxial tests).

Models and surfaces provided by BHOP

- Surpac files showing location of historic underground workings
- Aerial survey data of the mine lease.


Back analysis of existing slopes in the area

There are several historically stable slopes in the immediate area of the boxcut that were constructed using waste rock and fill material during the mining of the Blackwood Pit Figure 3 shows the location of the fill slopes in relation to the proposed boxcut location.

Figure 3 Existing fill slopes in the boxcut area

Plan view

Perspective view (Looking north - east)

2.4 Limitations

The geotechnical data collected from the drilling programs was analysed to define the boundaries between fill material, weathered rock, and fresh rock and to determine the insitu strength properties of the rock units.

Insitu strength testing of the fill material was considered, however due to the depth of the material and the variable nature of deposition, insitu strength testing was considered an unsuitable method for determining the material properties of the fill material. The material properties adopted for assessing the fill material have been derived from GCE's experience with waste rock and sandfill material behaviours, from back-analyses of the performance of historic fill sites on site.

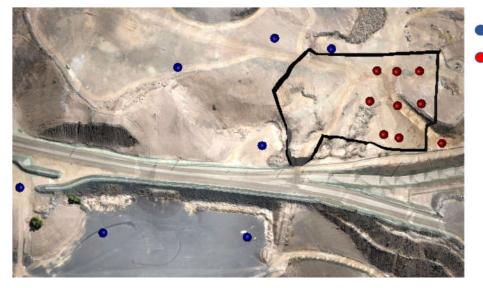
Access restrictions and depth of fill cover limited the extent of the drilling program in the western area of the boxcut area. Several holes were drilled in this area without definitively intersecting rock due to the depth of fill cover.

The location of the old workings in the vicinity of the proposed boxcut location were digitised from historic mining plans by BHOP. The accuracy of this information cannot be verified or guaranteed without probe drilling or accessing the workings.

The location for the boxcut does not intersect known underground workings apart from the Wilson and Darling Shafts located on what will be the western wall of the boxcut. These shafts originally connected the underground workings to the surface; however, it is believed that these shafts were filled after abandonment. The location of the Wilson and Darling Shafts is shown in Figure 4.

Figure 4 Wilson and Darling Shaft locations – plan view

3 Geotechnical data collection


3.1 2018 and 2019 Geotechnical drilling programs

Seven diamond drill holes were completed in 2018, followed by 9 diamond drill holes in 2019, spaced over the boxcut surface area. The purpose of the drilling was to locate the base of the historic fill material that overlies the surface of the intended boxcut location and to characterise the weathering profile of the rock below the historic fill material. The details of the drill holes are provided in Table 2. The information gained from the geotechnical logging also formed the basis of the empirical analyses that was used in the determination of the portal batter and initial decline ground support design. a plan view of the hole locations is shown in Figure 5.

Hole ID	Depth (m)	Dip	Easting (m)	Northing (m)	RL (m)
MLDD3873	45.0	-90.0	9888.6	2351.0	10334.6
MLDD3874	36.0	-90.0	9989.4	2333.6	10325.0
MLDD3875	42.6	-90.0	9985.0	2177.8	10324.6
MLDD3876	44.4	-90.0	9935.2	2085.4	10335.5
MLDD3877	53.6	-90.0	9802.2	2259.7	10354.0
MLDD3878	42.0	-90.0	9771.0	2365.0	10352.0
MLDD3879	42.0	-90.0	9782.4	2426.0	10344.8
MLDD4132	41.0	-90.0	9842.4	2526.1	10343.3
MLDD4133	40.9	-90.0	9806.8	2524.2	10343.0
MLDD4134	40.1	-90.0	9807.2	2499.1	10343.2
MLDD4135	40.0	-90.0	9806.3	2477.5	10343.0
MLDD4136	40.1	-90.0	9806.9	2524.7	10342.9
MLDD4137	40.3	-90.0	9844.6	2500.1	10340.7
MLDD4138	41.0	-90.0	9876.1	2485.0	10342.1
MLDD4139	40.3	-90.0	9879.8	2501.7	10341.8
MLDD4140	40.9	-90.0	9886.0	2548.7	10335.8

Table 2: 2018 /2019 Geotechnical drilling program – drill hole details

Figure 5 Plan view of diamond drill investigation holes

2018 Drilling2019 Drilling

Laboratory testing – Rock samples

Seven representative samples from the WEATHERED zone were taken from three of the drill holes and submitted for unconfined compressive strength (UCS) and triaxial testing. The results are summarised in Table 3 and Table 4 and presented in Appendix A

	Sample In	terval		Failure mode	
Hole ID	From (m)	To (m)	UCS (MPa)		
MLDD3874	24.7	24.9	16.0	Shear on bedding plane	
MLDD3875	30	33.0	13.4	Multiple fracturing	
MLDD3876	21	21.25	24.3	Fracture along core axis	
MLDD3876	30	30.2	16.5	Shear on bedding plane	

Table 3: UCS test results from 2018 geotechnical drilling

Table 4 Triaxial test results from 2018 geotechnical drilling

Sample In	terval	Friction angle	Cohesion (KPa)	
From (m)	To (m)	(°)		
18.7	19.0	49.7	270.9	
31.4	31.6	32.2	92.4	
48.6	48.8	51.4	240.1	
	From (m) 18.7 31.4	18.7 19.0 31.4 31.6	From (m) To (m) Friction angle (°) 18.7 19.0 49.7 31.4 31.6 32.2	

4 Geotechnical model

Based on the information obtained from the geotechnical core logging and review of digital models, GCE have divided the rock mass into geotechnical units. Four geotechnical units have been defined and slope design parameters determined based on the orientation of the box cut walls and geotechnical characterisation of the rock mass. By using this approach, zones of the rock mass with similar geotechnical properties and anticipated slope performance can be grouped together.

Table 5 lists the geotechnical units and their prevalence in the geotechnical drill holes.

Table 5: Geotechnical units as logged in the drill holes

Geotechnical Unit	Metres Logged
FILL	118
WEATHERED unit - Extremely Weathered to Highly Weathered rock	238.46
TRANSITION unit - Highly Weathered to Moderately Weathered rock	160
FRESH rock	15.9

4.1 Rock mass quality

The box cut will be excavated in slopes comprising material from the FILL and WEATHERED units with the upper batter (approximately 15m) excavated predominantly in the FILL unit and the lower batter and portal face excavated in the WEATHERED unit. The boxcut is not expected to intersect the TRANSITION or FRESH rock units.

The boundaries of the units were defined using information from the recent drilling programs. The spatial distribution of the drilling data was limited by access to the area where the western wall and end wall of the boxcut is planned to be excavated. For this assessment, the material properties for the east, west and end wall of the boxcut are considered homogenous.

Further characteristics to note include:

- The upper batter will be excavated entirely in the FILL unit deposited from previous mining. The strength of this material is defined by its level of compaction, drainage characteristics and angle of repose. The FILL unit is assumed to be homogenous with respect to material properties.
- The WEATHERED unit is characterised by material affected by ground water and oxidation. The unit is of very low to low strength.
- Several fragmented and highly fractured zones were intersected in all the drill holes in each of the (natural) units. These zones were characterised by sheared, low strength material in various states of weathering.

4.2 Ground water and surface water

The geotechnical drilling program intersected several intervals where ground water was present indicated by saturated material in the core. These areas were located at the interface between the FILL unit and WEATHERED units. It is likely the saturated layer was the product of a perched water table rather than a natural water table.

The perched water table is not expected to adversely affect slope stability as the ground water in the area drains through the old workings and is collected in the current Rasp underground workings. However, provisions for dewatering infrastructure (e.g. dewatering bores and depressurisation holes) should be made to manage groundwater and surface water flows during excavation of the boxcut and to reduce deterioration and weakening of the slopes due to water ingress.

This assessment does not consider surface water flows or flood bunding around the box cut. A hydrological assessment of inflows (both groundwater and storm water) into the box cut is recommended to accurately assess drainage requirements and manage water flowing into the decline.

As a minimum, good drainage infrastructure that prevents surface water running over slopes and pooling on berms will be required.

5 Geotechnical design

5.1 Design criteria

Mine slope design is essentially governed by two factors:

- 1. The consequences of failure; and
- 2. The degree of inherent uncertainty.

To accommodate these two design factors, it is common practice to apply an appropriate Factor of Safety (FOS) and/or Probability of Failure (POF) to the design geometry of mine slopes. An example of FOS and POF design criteria is provided in Table 6. These design criteria have been developed from a combination of Western Australian, Department of Mines, Industry Regulation and Safety.

Wall Class	Consequence of Failure	Design FOS	Design POF	Pit Wall Examples				
1	Not serious	Not appl	icable	Walls not carrying major infrastructure) where all potential failures can be contained within containment structures				
2	Moderately serious	1.2	10%	Walls not carrying major infrastructure				
3	Serious	1.5	1%	Walls carrying major mine infrastructure (e.g. treatment plant, ROM pad, tailings structures)				
4	Serious	2.0	0.30%	Permanent pit walls near public infrastructure and adjoining leases				

Table 6: Examples of design criteria for open pit walls

For this analysis, a FOS of 1.5 was applied to reflect that the boxcut will be life of mine, permanent infrastructure.

5.2 Empirical assessment

Rock mass rating (RMR)

GCE have completed an empirical assessment of the rock mass comprising the WEATHERED and TRANSITION units using the geotechnical logging data processed into Rock Mass Rating (RMR), then Mining Rock Mass Rating (MRMR), to determine general slope angles. This approach is based on rock mass quality and assesses the likelihood of shear failure through the rock (rather than along structures). This has proven to be a highly effective approach for small to intermediate pit slopes where the method is based on numerous similar case studies. Table 7 and

Table 8 show RMR values determined from assessment of the logging data.

Table 7 Core logged based on RMR

RMR Range	Description	Metres logged
<u>≤</u> 20	Very Poor Rock	35
21 to 40	Poor Rock	86
41 to 60	Fair Rock	58.3
61 to 80	Good Rock	39.3
81 to 100	Very Good Rock	3

Table 8: RMR statistical data for each geotechnical unit

	RMR						
Geotech Unit	Minimum	25% Quartile	Median	75% Quartile	Maximum		
WEATHERED	0	39	50	58	79		
TRANSITION	0	56	65	73	83		

Mining rock mass rating (MRMR)

MRMR values were derived for the WEATHERED and TRANSITION units and used to guide the determination of interramp slope angles (IRSA) for the lower pit walls comprising the WEATHERED and TRANSITION units using the method of Haines and Terbrugge (1991). Median data was used to assess the design to account for the small number of data points available for the assessment (Table 9).

Table 9: MRMR statistical data

			MRMR		
Geotechnical Unit	Minimum	25% Quartile	Median	75% Quartile	Maximum
WEATHERED	0	11.3	23.5	40.0	34.4
TRANSITION	0	11.7	24.8	57.2	57.2

The Haines and Terbrugge design chart utilises MRMR values to determine inter ramp slope angles (IRSAs) based on a number of case studies comprising pit slopes in rock. For this case, the Haines and Terbrugge design chart is applied to the bottom 10m bench which will be excavated in the WEATHERED unit. Overall stope stability will be addressed in Section 5.3

IRSAs for Factor of Safety 1.5, using the median value MRMR are shown in Table 10.

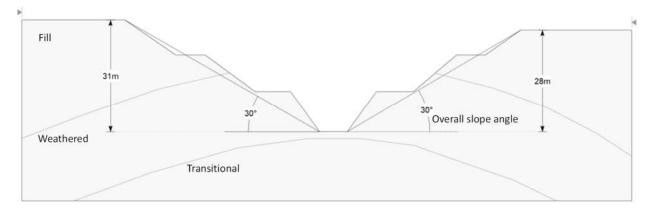
Table 10: IRSA using Haines and Terbrugge design chart

Geotechnical Unit	MRMR Median	Slope Height (m)	IRSA (Haines & Terbrugge)
WEATHERED	23.9	16	42°

5.3 Slope stability modelling

Representative sections were modelled using "Slide" 2D limit equilibrium software by Rocscience to identify slope design configurations that met or exceeded the FOS criteria.

The material properties for all units remained fixed for all slope configurations (Table 11). The Bishop simplified and GLE/Morgenstern-Price methods were used to assess for circular failure. Results are presented in Appendix B


Table 11: Material properties for Slide modelling

			Strength Parameters		
Geotechnical Unit	Strength Type	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle	
FILL	M-C	20	5.0	36°	
WEATHERED	M-C	24	92	32°	
TRANSITION	M-C	24	270	50°	

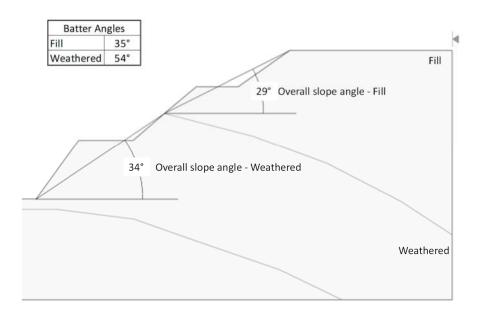

Notes: M-C – Mohr-Coulomb

Figure 6 show the overall model geometry for permanent slopes and Figure 7 shows detailed model geometry for the east wall of the boxcut at the portal face.

Figure 6 Slide model configuration for permanent slopes

Figure 7 Detailed model geometry

Discussion on modelling results;

The results of the modelling indicate an overall slope angle of 30 degrees or less meets or exceeds the Factor of Safety criteria of 1.5

Slopes in the FILL unit

Based on the assumed geotechnical conditions, the modelling indicates stable slopes in the FILL unit at the proposed slope configuration.

Slopes in combination of FILL and WEATHERED units

Slopes constructed in both the FILL and WEATHERED units are expected to be stable at the proposed slope configuration.

Slopes in the WEATHERED unit

The results of the modelling indicate the slopes in the WEATHERED unit are expected to be stable at the proposed slope configuration.

Portal batter face

It is expected that the portal batter will be excavated in the WEATHERED unit. The stability of the portal batter may be compromised if FILL unit is present above the crown of the portal. Further detailed geotechnical assessment and a specific ground support design corresponding to the ground conditions encountered, will be required for the portal and portal batter face once it is exposed. It is important to note that the depth and overall shape of TRANSITION and WEATHERED units is based on limited information.

Two-dimensional modelling cannot account for confinement of slopes from the side walls (by the end wall) and the end wall (by the side walls). As such, it could be considered that the FOS results may be slightly higher if this confinement of abutting walls are incorporated into the modelling.

The model results are presented in Appendix B.

Seismic loading

The Rasp Mine experiences irregular, low level seismic activity in part due to mining activity in the area. A preliminary assessment of seismic loading on the boxcut slopes was undertaken during this analysis. A peak ground acceleration (PGA) value of 0.15 was applied to the analysis according to the Geoscience Australia NSHA18 hazard map, the map depicts the mean PGA for a 10% probability of exceedance in 50 years. The results of the analysis predict stable boxcut slopes when a seismic coefficient of 0.15g is applied to the model. Such an event is unlikely to trigger failure of the de-watered slopes but should warrant a detailed inspection for possible remediation. Any TARP that is developed for ground conditions for the boxcut should include seismic activity.

Surface erosion

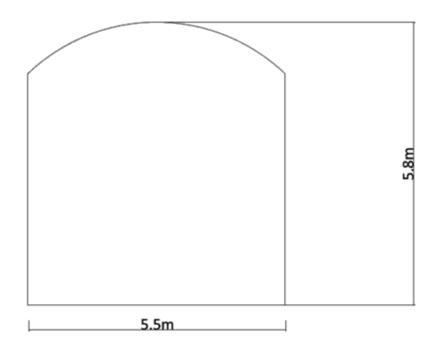
The annual rainfall in Broken Hill is less than 250mm per annum. Long term erosion of the boxcut batters and berms is not expected to compromise the stability of the boxcut slopes apart from minor narrowing of the berms and the forming of erosion channels on the batter slopes in FILL unit. Broken Hill occasionally experiences high intensity rainfall events which may result in increased boxcut slope erosion. Measures to control long term erosion should be adopted by Rasp and access to the benches in the FILL unit should be maintained if remedial works are required. The boxcut design incorporates wide berms to account for potential erosion of the berm crests over the longer term, however, erosion protection is recommended for permanently exposed boxcut slopes and benches.

6 Portal batter design

The portal face is expected to be excavated in the WEATHERED unit. Ground conditions are expected to be "very poor" to "poor" GCE recommend that the final portal ground support design and initial decline support design is finalised once the portal face is established and ground support is installed. Due to expected poor ground conditions, controlled perimeter blasting is recommended to avoid damaging the drive profile during the construction of the portal.

For 'very poor" ground conditions (Q<1), the portal face and wall should be supported with the following elements:

- 75 mm FRS (fibre reinforced shotcrete), strength UCS 40 MPa after 28 days over mesh. The FRS should cover the entire portal face and wrap over the portal bench by at least 2m and a minimum of 10m of wall coverage back from the face.
- The portal face should be cable bolted using 10m length, twin strand cable bolts at 2m centres. Cable bolts may be drilled slightly upwards at less than 5 degrees from the horizontal.
- Install 9m long spiling bars at approximately 300mm centres around the portal arch. Overlap 1.5m between spiling rounds.
- Ground improvement techniques including soil nailing and pressure grouting may be required for the portal batter if very poor ground conditions are encountered. This work should be undertaken before establishing the ramp to the portal batter face.


The proposed portal face design is shown in Appendix C. The support guidelines should be re-evaluated once the portal face is established.

7 Initial decline design

7.1 Decline ground conditions

The decline will be excavated using the same arched profile that is in use for the Western Min decline, the dimensions of the decline are shown in Figure 8.

Figure 8 Decline excavation profile for the decline

The decline will commence in the WEATHERED unit, the expected ground conditions for the initial decline development are expected to be "very poor" to "poor", consistent with the assessment of the rock unit in this report. Ground conditions are expected to improve as the decline progresses through the TRANSITION and FRESH rock units. An improved level of data pertaining to ground conditions along the decline path is recommended to refine the rock mass characterisation information for the decline path which will facilitate the prediction of ground conditions ahead of the decline face.

7.2 Decline ground support

Rasp have a comprehensive system for managing ground conditions during development which is detailed in the Principal Hazard Management Plan – Ground or Strata Failure. It is expected that the procedures for managing ground conditions and ground support methodology will be applied to the decline. Unexpected changes in ground conditions will be managed by exception which may require, specific ground support design.

The ground support configurations that will be applied to the decline are shown in Appendix D.

8 Summary of findings

8.1 Box cut slope design parameters

The recommended slope design parameters for the box cut slopes are presented in Table 12 and are to be read in conjunction with the comments that follow the table. They have been reached using a combination of geotechnically derived results from the following methods:

- Empirical assessment
- 2D slope stability modelling

Table 12 Summary of slope design parameters

Bench Number	Geotechnical unit	Maximum batter angle	Maximum batter height in material	Bench width	Maximum slope angle in material	Maximum slope height
1	Fill	35°	10m	10m	29°	18m
2	FILL / WEATHERED CONTACT	40°	10m	10m	NA	10m
3	WEATHERED	54°	10m	10m	34°	16.5m

The following comments are critical to application of the slope design parameters presented above:

- Dewatered slopes are recommended to ensure the long-term stability of the box cut. Provision for depressurised walls (de-watering holes may be required) and surface drainage should be made.
- The slope design parameters are appropriate for good final wall blasting techniques (i.e. pre-split and/or trim blasted) and good slope management (e.g. scaling walls). Note: pre-split blasting may not be the best method in the weathered, low strength ground due to the damage potential from explosive energy directly against the final walls.
- Routine geotechnical inspections of batters and berms, and the commissioning of a slope movement monitoring system (i.e. a system of prisms set up along berm crests and routinely surveyed by mine surveyors).
- A preliminary seismic loading analysis indicates stable boxcut slopes when a seismic coefficient of 0.15g is applied to the model. Such an event is unlikely to trigger failure of the de-watered slopes but should warrant a detailed inspection for possible remediation. Any TARP that is developed for ground conditions for the boxcut should include seismic activity.
- Long term erosion of the boxcut batters and berms is not expected to compromise the stability of the boxcut slopes apart from minor narrowing of the berms and the formation of erosion channels on the batter slopes in FILL unit. Broken Hill occasionally experiences high intensity rainfall events which may result in increased boxcut slope erosion. Measures to control long term erosion should be adopted by Rasp and access to the benches in FILL unit should be maintained if remedial works are required.
- Erosion protection is recommended for the portal batter and bench to prevent damage to the portal batter surface support.

8.2 Portal face design

- The portal face will be excavated in the WEATHERED unit. Ground conditions are expected to be "very poor" to "poor". GCE recommends that the final portal ground support design and initial decline support design is finalised once the portal face is established.
- Preliminary ground support requirements for "very poor" and "poor" to "Fair" rock mass quality are provided in Section 5.

8.3 Decline design and ground conditions

The decline will commence in the WEATHERED or TRANSITION rock unit, the expected ground conditions for the initial decline development are expected to be "very poor' to 'poor", consistent with the assessment of the rock units in this report. Ground conditions are expected to improve as the decline progresses towards less weathered rock units. An improved level of data pertaining to ground conditions along the decline path is recommended to refine the rock mass characterisation information which will facilitate the prediction of ground conditions ahead of the decline face.

The ground conditions for the decline will be managed according to the requirements of the Rasp Principal Hazard Management Plan (PHMP) – Ground or Strata Failure. Adverse ground conditions that fall outside the scope of the PHMP will be managed by exception.

Appendix A Laboratory test results

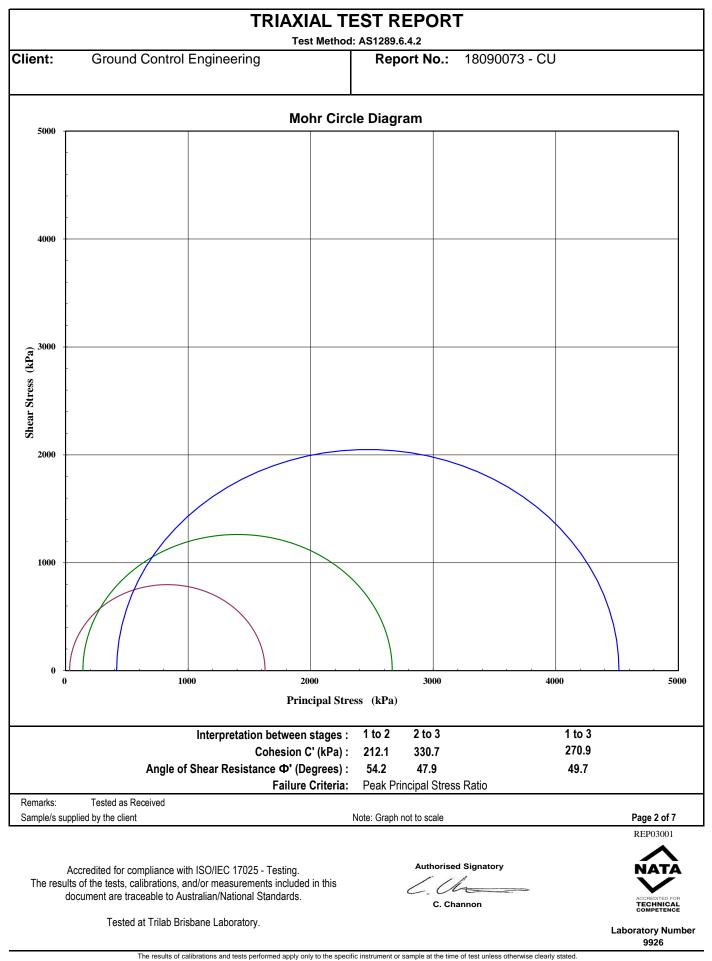
		COMPRESSIVE S Test Method: AS 4133.			
Client	Ground Control Engineering			Report No.	18090069-UCS
Address	16 Farmer Street, Edmonton	OLD 4869		Workorder No.	0004803
Audress	To Famer Street, Eunonion		Test Date 12/09/2018		
Project I	Rasp Mine - Broken Hill			Report Date	13/09/2018
	MLDD3874			Depth (m)	24.70-24.90
Description -	-				2111021100
Sample Type	Single Individual Roo	ck Core Specimen			
oumpie Type		TEST DE	ETAILS		
Average Sample	Diameter (mm)	60.5	Moistur	e Content (%)	0.2
Sample Height (159.9		ensity (t/m ³)	2.76
Duration of Test		5:23		nsity (t/m ³)	2.75
Rate of Loading		2.97	Beddin		60
Mode of Failure		Shear		- · ·	
Rupture Angle (°)	65	Test Ap	oparatus	Kelba 1000 kN Load Cell
	/	UCS (MPa)	16.0		
		Before and After		'hoto's	
		Before and Arter	resting r		
	CLIENT:	Ground Control Eng			
	PROJECT:	Rasp Mine - Broken		BEFORE TEST	
	LAB SAMPLE No BOREHOLE:	MLDD3874		DATE: 12/09/18 DEPTH: 24.70-24.90	
			*		
	CLIENT:	Ground Control Eng	gineering		
	CLIENT: PROJECT:	Ground Control Eng Rasp Mine - Broken	0	AFTER TEST	
		Rasp Mine - Broken	Hill	AFTER TEST	
	PROJECT:	Rasp Mine - Broken	Hill	AFTER TEST AFTE: 12/09/18 DEPTH: 24.70-24.90	
	PROJECT: LAB SAMPLE No	Rasp Mine - Broken . 18090069	Hill	DATE: 12/09/18	
tored and tested as r	PROJECT: LAB SAMPLE No BOREHOLE:	Rasp Mine - Broken . 18090069	Hill	DATE: 12/09/18	Photo's not to scale Page: 10f1 REP02
The results of the tests	PROJECT: LAB SAMPLE No BOREHOLE:	Rasp Mine - Broken 18090069 MLDD3874		DATE: 12/09/18	

Client	Ground Control Engineering	Test Method: AS 4133.4.				
Client	Ground Control Engineering		Report No.	18090070-UCS		
Address	16 Farmer Street, Edmonton	QLD 4869	Workorder No. Test Date	0004803		
			Report Date	13/09/2018		
Project	Rasp Mine - Broken Hill					
Client ID	MLDD3875		Depth (m)	21.00-21.25		
Description	-					
Sample Type	Single Individual Rock	Core Specimen				
		TEST DE	TAILS			
Average Sampl	le Diameter (mm)	60.9	Moisture Content (%)	0.2		
Sample Height	(mm)	164.4	Wet Density (t/m ³)	2.85		
Duration of Tes	t (min)	25:05	Dry Density (t/m ³)	2.84		
Rate of Displac	ement (mm/min)	0.10	Bedding (°)	80		
Mode of Failure	;	Shear	Test Apparatus	100 kN Load Cell in		
Rupture Angle	(°)	80		Compression Machine		
		UCS (MPa)	24.3			
		Before and Aft	ter Photo's			
			•			
	CLIENT: PROJECT:	Ground Control En Rasp Mine - Broke		F		
	LAB SAMPLE NO		DATE: 12/09/18			
	BOREHOLE:	MLDD3875	DEPTH: 21.00-21.	25		
	CLIENT: PROJECT:	Ground Control E Rasp Mine - Brok	on Hill			
	LAB SAMPLE N		DATE: 12/09/18	1		
	BOREHOLE:	MLDD3875	DATE: 12/04/18 DEPTH: 21.00-21.	25		
		~				
OTES/REMARKS: tored and tested as				Photo's not to scale Page: 1 of 1 REP13		
			Autoria d Olivertaria	^		
ample/s supplied by Accr	redited for compliance with ISO/IEC 17025 - Te sts, calibrations, and/or measurements included traceable to Australian/National Standards.		Authorised Signatory			

Client		Test Method: AS 4133.4.					
Client (Ground Control Engineering		Report No. Workorder No.	18090071-UCS 0004803			
Address 1	16 Farmer Street, Edmonton	QLD 4869	Test Date	12/09/2018			
			Report Date 13/09/2018				
Project F	Rasp Mine - Broken Hill						
Client ID N	MLDD3875			Depth (m)	32.80-33.00		
Description -							
Sample Type	Single Individual Roc						
		TEST DE	TAILS				
Average Sample	Diameter (mm)	61.0	Moistur	e Content (%)	0.3		
Sample Height (r	mm)	153.8	Wet De	ensity (t/m ³)	2.69		
Duration of Test	(min)	19:53	Dry Dei	nsity (t/m³)	2.68		
Rate of Displace	ment (mm/min)	0.10	Bedding	g (°)	70		
Mode of Failure		Shear	Test Ap	oparatus	Kelba 1000 kN Load Cell		
Rupture Angle (°))	70	-				
		UCS (MPa)	13.4				
		Before and Af	ter Photo	o's			
	CLIENT:	Ground Control Er	ngineering				
	PROJECT:	Rasp Mine - Broke	n Hill	BEFORE TEST			
	LAB SAMPLE N	o. 18090071		DATE: 12/04/18			
	BOREHOLE:	MLDD3875		DEPTH: 32.80-33.00			
		MLPD 3	875				
		MLDD 3	768.				
	CLIENT: PROJECT:	MLPD 3 Ground Control Eng Rasp Mine - Broken	0 0				
	PROJECT:	Rasp Mine - Broken	Hill	AFTER TEST			
		Rasp Mine - Broken	Hill	AFTER TEST DATE: 12/09/18 DEPTH: 32.80-33.00			
	PROJECT: LAB SAMPLE No	Rasp Mine - Broken . 18090071	Hill	DATE: 12/09/18			
ored and tested as re	PROJECT: LAB SAMPLE No BOREHOLE:	Rasp Mine - Broken . 18090071	Hill	DATE: 12/09/18	Photo's not to scale Page: 1 of 1 REP132		
The results of the tests	PROJECT: LAB SAMPLE No BOREHOLE:	Rasp Mine - Broken 18090071 MLDD3875 Festing. ed in this document are	Hill	DATE: 12/09/18			

Client	Ground Control E		Test Method: AS 4133.4.2			
Onent		Ingineering			Report No. Workorder No.	18090072-UCS 0004803
Address	16 Farmer Street	, Edmonton Q	_D 4869		Test Date	12/09/2018
					Report Date	13/09/2018
Project	Rasp Mine - Brol	ken Hill				
Client ID	MLDD3876				Depth (m)	30.00-30.20
Description	-					
Sample Type	Single I	ndividual Rock (
			TEST DE	FAILS		
Average Sampl	e Diameter (mm)		60.8	Moisture	Content (%)	0.3
Sample Height	(mm)		131.6	Wet Den	sity (t/m³)	2.69
Duration of Tes	t (min)		21:21	Dry Dens	sity (t/m ³)	2.68
Rate of Displac	ement (mm/min)		0.10	Bedding	(°)	70
Mode of Failure			Shear	Test App	paratus	100 kN Load Cell in Compression Machine
Rupture Angle ((°)		70	40.5		
			UCS (MPa)	16.5		
			Before and Aft	er Photo'	S	
	CL	IENT:	Ground Control Eng	gineering		
	PR	OJECT:	Rasp Mine - Broken	Hill	BEFORE TEST	
		B SAMPLE No. REHOLE:	18090072 MLDD3876		DATE: 12/09/18 DEPTH: 30.00-30.20	
	CI	LIENT:	Ground Control En	gineering		
		LIENT: ROJECT:	Ground Control En Rasp Mine - Broken	0	AFTER TEST	
				Hill	AFTER TEST DATE: 12/09/18 DEPTH: 30.00-30.20	
		ROJECT: B SAMPLE No.	Rasp Mine - Broken 18090072	Hill	DATE: 12/09/18	
ored and tested as	received	ROJECT: B SAMPLE No.	Rasp Mine - Broken 18090072 MLDD3876		DATE: 12/09/18	Photo's not to scale Page: 1 of 1 REP133
	received	ROJECT: B SAMPLE No. DREHOLE: DREHOLE: A ISO/IEC 17025 - Test pasurements included in	Rasp Mine - Broken 18090072 MLDD3876	iameter ratio	DATE: 12/09/18 DEPTH: 30.00-30.20	Photo's not to scale Page: 1 of 1 REP133

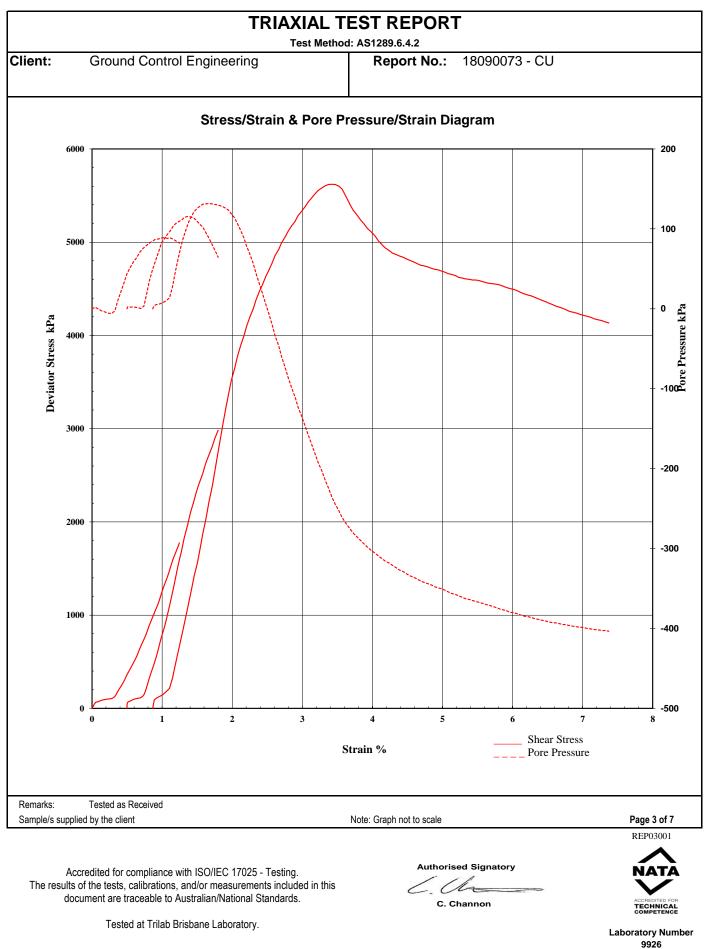
Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323


9926

			•		XIAL TE					
Client:	Ground	Control	Enginee					Report No.:	18090073 - Cl	J
							Wo	orkorder No.	0004803	
Address	16 Farmer Street, Edmonton QLD 4869							Test Date:	28/09/2018	
							6	Report Date:	12/10/2018	
Project:	Rasp Mi	ne - Bro	ken Hill				•		12/10/2010	
Client Id.:	MLDD38			pth (m):	18.70-19.00)				
Description:	MEDDOC	71-1					pun (m).	10.70 10.00	,	
Description.				94	MPLE & TE					
Initial Height:	128.5	mm	[loisture Content:	3.1 3.1	%	Ra	te of Strain: 0.007	%/min
Initial Diameter:		mm		Final M	loisture Content:	9.8	%	В	Response: 98	%
L/D Ratio:	2.1 : 1				Wet Density:	2.34	t/m ³			
Sample Type:	Single Indivi	dual I Indisti	urbed Specir	non	Dry Density:	2.27	t/m ³			
Gample Type.										
					TEST RE		•			
							•			
	Confining	Back		Failure	FAILURE D		fective Stresse	s	Deviator Stress	Strain
Effective Pressure	Pressure	Pressure	Initial Pore	Pore	σ' ₁		σ'3	σ ' ₁ / σ ' ₃		
120 kPa	624 kPa	504 kPa	504 kPa	591 kPa	1628 kF	Pa	33 kPa	49.774	1595 kPa	1.15 %
243 kPa	747 kPa	504 kPa	504 kPa	606 kPa	2665 kF		141 kPa		2525 kPa	1.58 %
494 kPa	1000 kPa	506 kPa	506 kPa	584 kPa	4516 kF	Pa	416 kPa	a 10.864	4100 kPa	2.21 %
				FA	ILURE EN	IVELO	PES			
			Interpreta		ween stages :	1 to 2	2 to 3		1 to 3	
		Annala af			sion C' (kPa) :	212.1	330.7		270.9	
		Angle of	Snear Res		Φ' (Degrees) : ailure Criteria:	54.2 Peak Pr	47.9 incipal Stres	s Ratio	49.7	
				16	andre Oriteria.	TCakii		5 1 400		
		· .								
Remarks: Sample/s supplied I	Tested as Rea	ceived							Page	1 of 7
									-	03001
							Authoria	sed Signatory		\land
Accre The results of t	dited for com he tests. calit							sed Signatory		АТА
	ient are trace						C. C	Channon		
	Tested at	Trilab Brist	ane Laborat	tory.						PETENCE ry Number

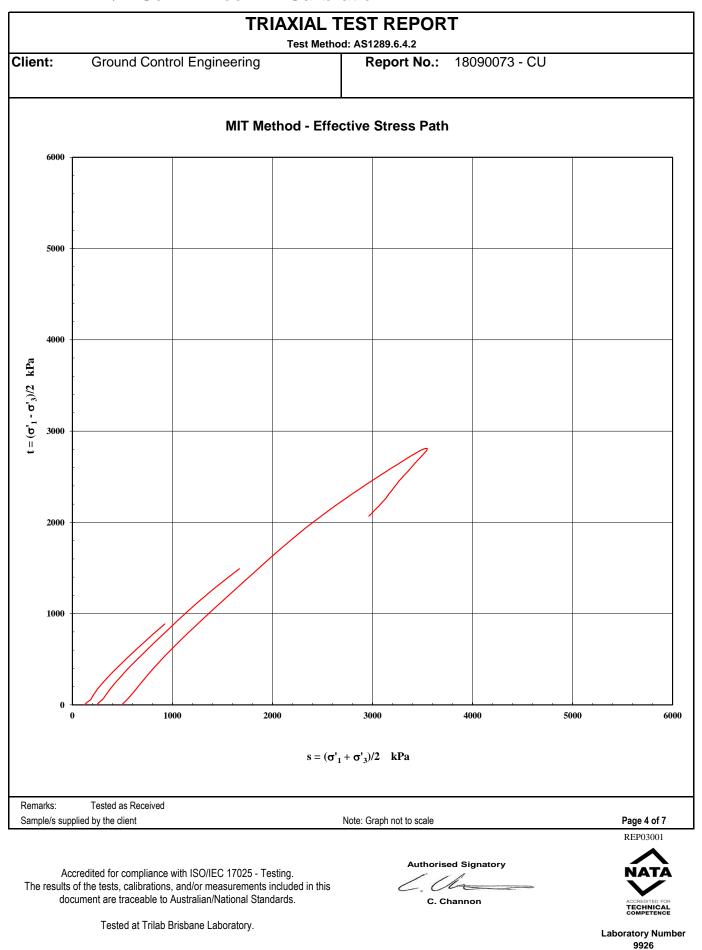
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323



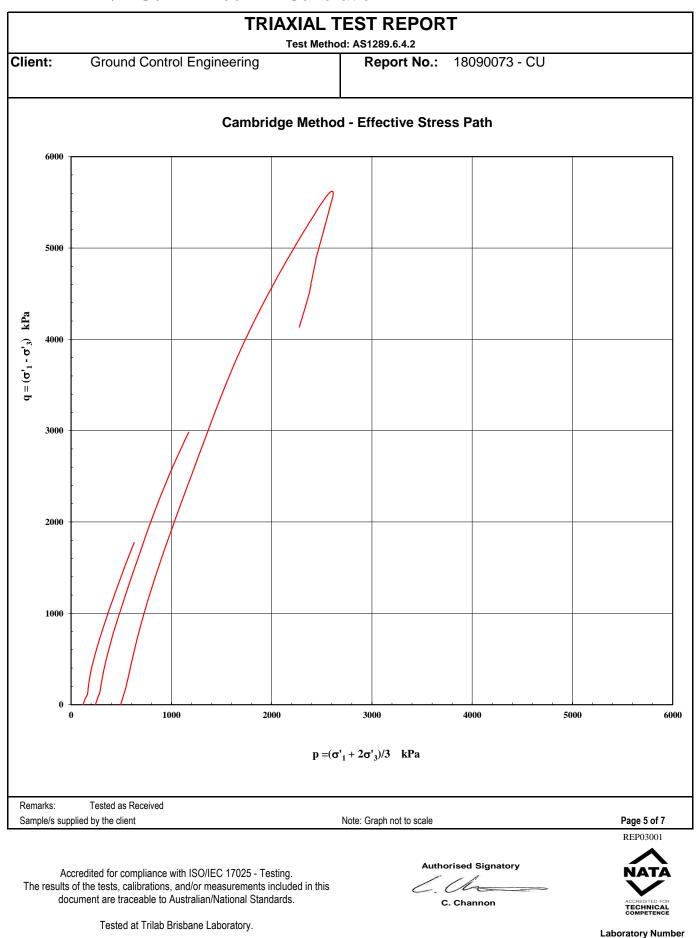
suits of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly state Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

IId be made to Trilab's "Standard Terms and Conditions of Business" for further det Trilab Pty Ltd


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323



The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

9926

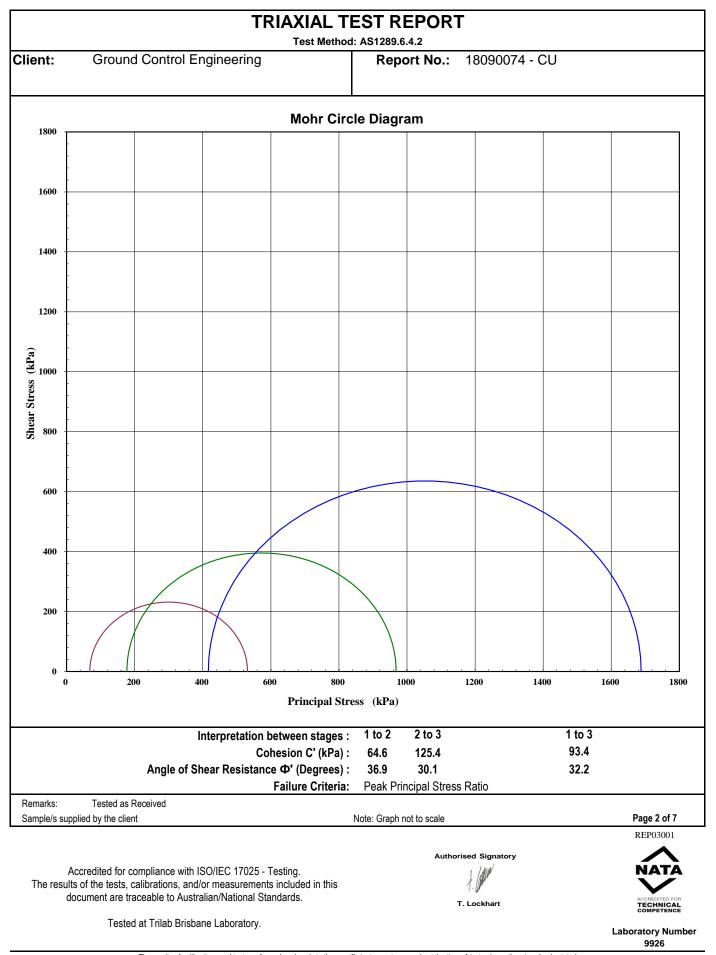
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

9926

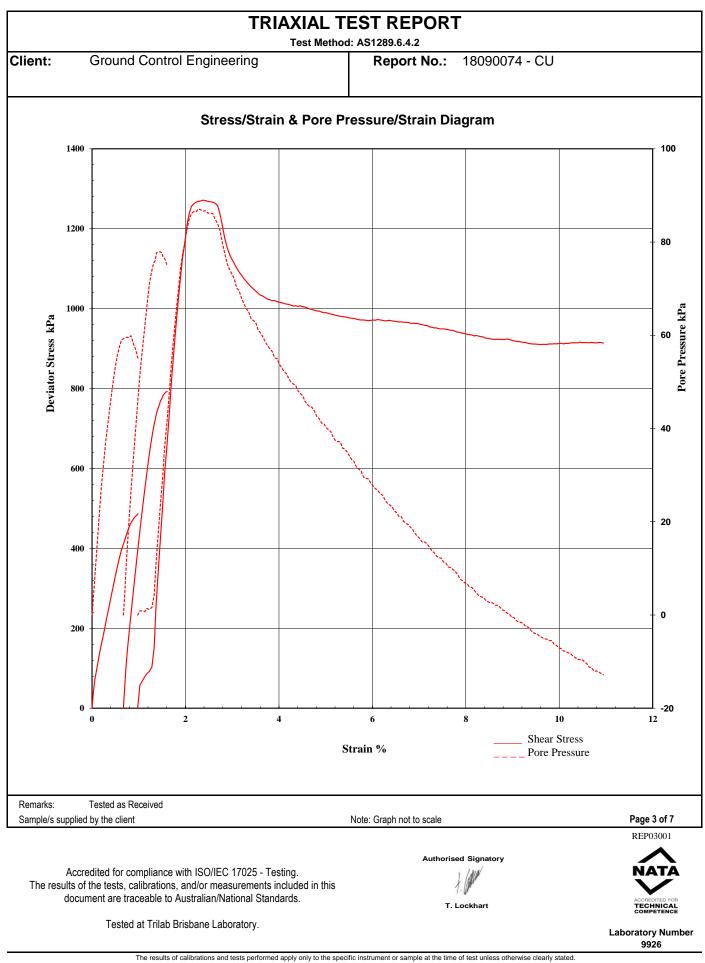
		TRIAXIAL TEST R Test Method: AS1289.		
Client:	Ground Control Eng		ort No.: 18090073 - CU	
	CLIENT:	Ground Control Engine	ering	
	PROJECT:	Rasp Mine - Broken Hil		
		rusp mile - broken mi	BEFORE TES	T
	LAB SAMPLE No.	18090073	DATE: 109/18	
- 1	BOREHOLE:	MLDD3874	DEPTH: 18.70-19.	.00
	CLIENT: PROJECT:	Ground Control Engined Rasp Mine - Broken Hill		_
	LAB SAMPLE No.	18090073	DATE: 05/10/18	
- 1	BOREHOLE:	MLDD3874	DEPTH: 18.70-19.00	
Remarks:	Tested as Received			
Sample/s su	upplied by the client	Note: Photo r	not to scale	Page 6 of 7
The result	Accredited for compliance with ISO/II is of the tests, calibrations, and/or m ocument are traceable to Australian, Tested at Trilab Brisbane L	easurements included in this National Standards.	Authorised Signatory	REP03001

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

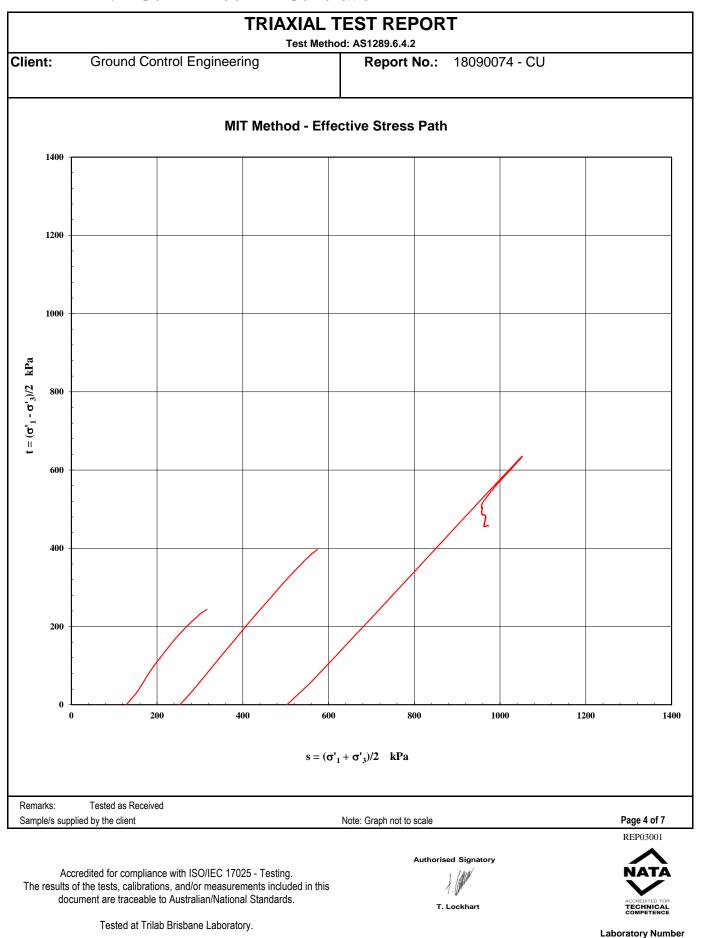

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

			•		XIAL TES					
Client:	Ground	Control	Enginee	ring				Report No.:	18090074 - Cl	J
							Wo	orkorder No.	0004803	
Address	16 Farmer Street, Edmonton QLD 4869							Test Date:	26/09/2018	
							F	Report Date:	10/10/2018	
Project: Rasp Mine - Broken Hill										
Client Id.:	MLDD38	376				De	pth (m):	31.40-31.6	0	
Description:										
1.92.111.2.17	405.0			-	MPLE & TE	-	-			0/1
Initial Height: Initial Diameter:	125.6 60.7	mm mm			loisture Content:	1.1 8.3	% %		ate of Strain: 0.007 B Response: 99	%/min %
L/D Ratio:	2.1 : 1			i ina iv	Wet Density:	2.23	t/m ³	ľ	S Nesponse. 33	70
					Dry Density:	2.21	t/m ³			
Sample Type:	Single Indivi	dual Undist	urbed Specir	nen						
					TEST RE	SULTS	6			
		I		I	FAILURE D	-				T
Effective Pressure	Confining Pressure	Back Pressure	Initial Pore	Failure Pore	σ' ₁	Principal Ef	fective Stress	es σ'1/σ'3	Deviator Stress	Strain
128 kPa	627 kPa	499 kPa	499 kPa	559 kPa	531 kP	а	σ' ₃ 68 kPa		463 kPa	0.83 %
253 kPa	751 kPa	498 kPa	498 kPa	574 kPa	968 kP	а	177 kP	a 5.466	791 kPa	1.58 %
503 kPa	904 kPa	401 kPa	401 kPa	488 kPa	1688 kF	^o a	416 kP	a 4.054	1272 kPa	2.38 %
							I			
				FA	ILURE EN	IVELO	PES			
			Interpreta		ween stages :	1 to 2	2 to 3		1 to 3	
		Anala of			sion C' (kPa) :	64.6	125.4		93.4	
		Angle of	Snear Res		Φ' (Degrees) : ailure Criteria:	36.9 Peak Pr	30.1 incipal Stres	s Ratio	32.2	
							<u>nopu oto</u>			
Remarks: Sample/s supplied b	Tested as Re	ceived							Page	1 of 7
	-								-	03001
The results of t	dited for com he tests, calil lent are trace	brations, an	d/or measure	ements inc	cluded in this			sed Signatory		EDITED FOR HNICAL PETENCE
	Tested at	: Trilab Brist	ane Laborat	tory.					Laborato	ry Number 926

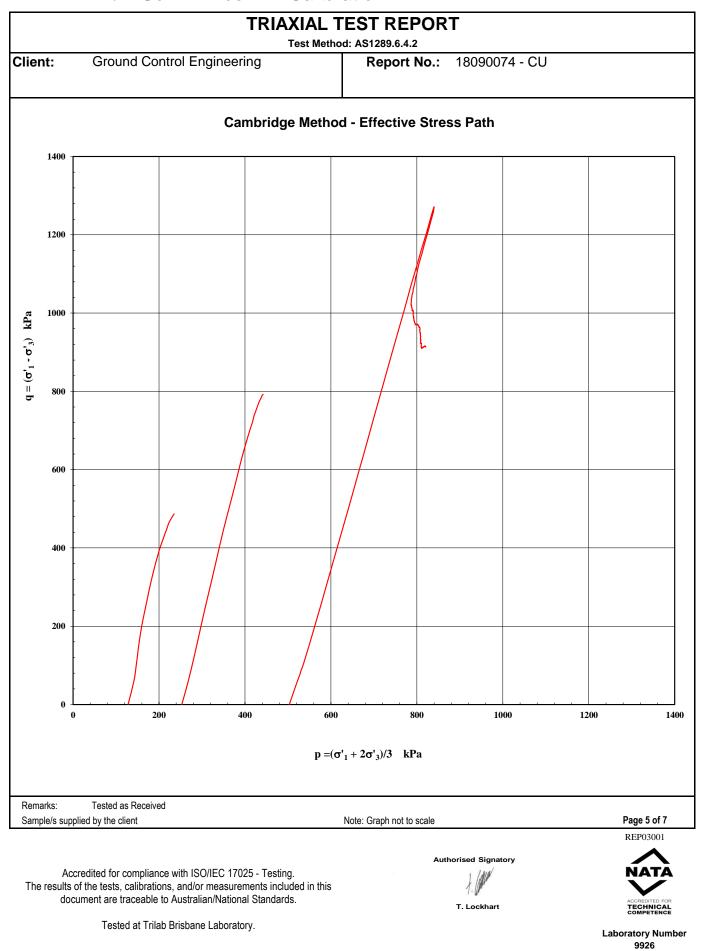
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323


9926

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

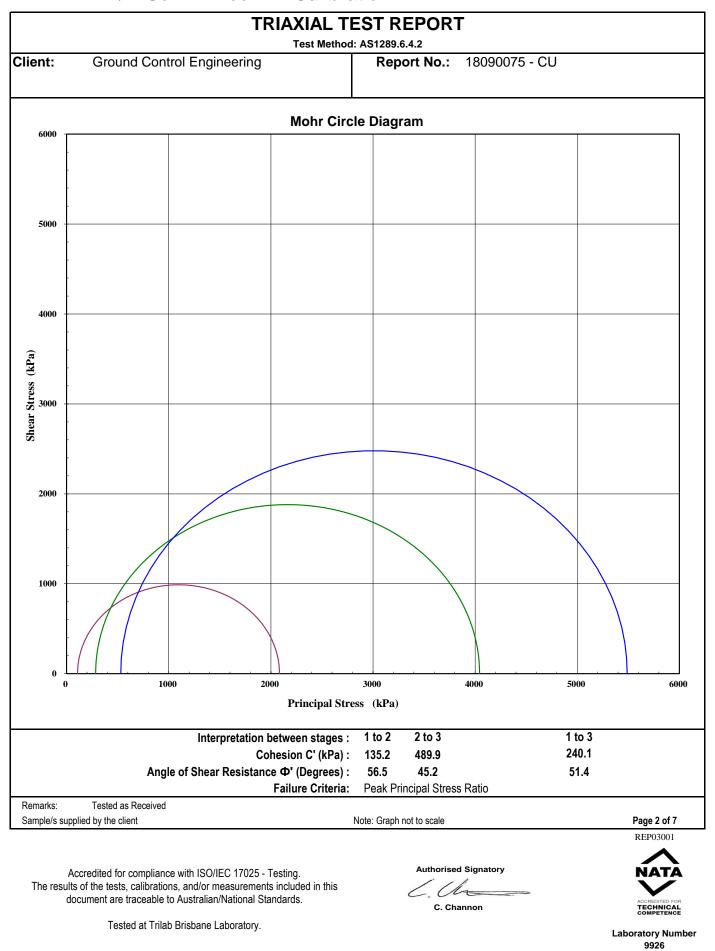
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		TRIAXIAL T	EST REPO	RT	
Client:	Ground Control Eng	Ground Control Engineering		Report No.: 18090074 - CU	
	CLIENT:	Ground Control			
	PROJECT:	Rasp Mine - Brol	ken Hill	BEFORE TEST	
- 1	LAB SAMPLE No.	18090074		DATE: 11 09/18	
	BOREHOLE:	MLDD3876		DEPTH: 31.40-31.6	0
	CLIENT: PROJECT:	Ground Control Rasp Mine - Bro			
- 1			xen min	AFTER TEST	
- 1	LAB SAMPLE No BOREHOLE:	MLDD3876		DATE: 03/0/18 DEPTH: 31.40-31.60	
Remarks: Sample/s si	Tested as Received upplied by the client	1	Note: Photo not to scale	9	Page 6 of 7
/ The resul	Accredited for compliance with ISO/I ts of the tests, calibrations, and/or m locument are traceable to Australian Tested at Trilab Brisbane L	easurements included in this /National Standards.		rised Signatory	REP03001

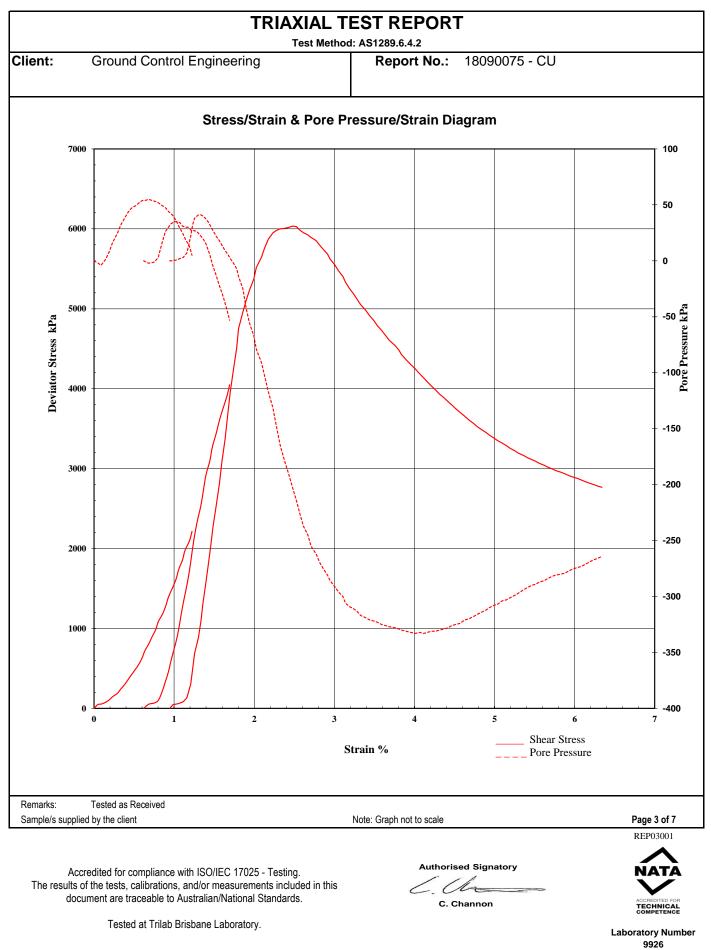
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323


9926

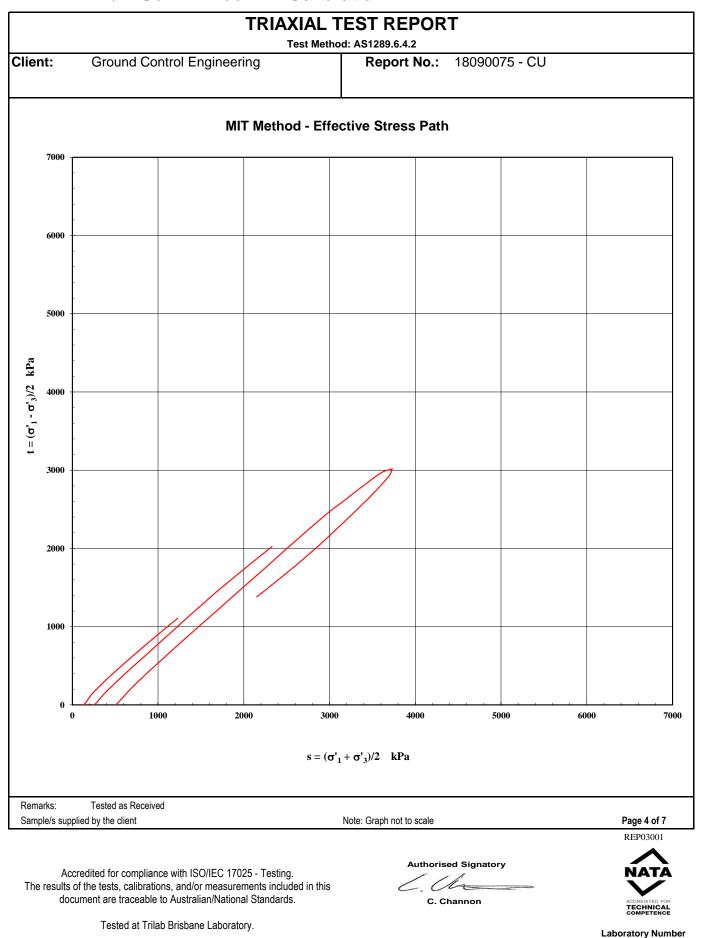
TRIAXIAL TEST REPORT Test Method: AS1289.6.4.2											
Client: Ground Control Engineering				Report No.:		18090075 - CU					
				Workorder No. 0004803							
Address 16 Farmer Street, Edmonton QLD 4869					Test Date:	25/09/2018					
				F	Report Date:	12/10/2018					
Project:	•							,			
Client Id.:											
Description:											
•				SA	MPLE & TE	ST DETA					
Initial Height:	Initial Height: 126.0 mm Initial Moisture Content: 3.1 %		1	Ra	te of Strain: 0.007	%/min					
Initial Diameter:	61.3	mm		Final N	loisture Content:	6.6	%	В	Response: 99	%	
L/D Ratio:	2.1 : 1				Wet Density:	2.47	t/m ³				
Sample Type:	Single Indivi	dual Undisti	urbed Specir	men	Dry Density:	2.40	t/m ³				
					TEST RE	SULTS	6				
					FAILURE D	ETAILS					
	Confining	Back		Failure		Principal Effective Stresses		es	Deviator Stress	Strain	
Effective Pressure	Pressure	Pressure	Initial Pore	Pore	σ ' ₁		σ'3	σ ' ₁ / σ ' ₃			
127 kPa	624 kPa	497 kPa	497 kPa	517 kPa	2084 kF		107 kPa		1977 kPa	1.14 %	
252 kPa 505 kPa	750 kPa 1001 kPa	498 kPa 496 kPa	498 kPa 496 kPa	466 kPa 471 kPa	4044 kF 5490 kF		284 kPa 530 kPa		3760 kPa 4960 kPa	1.61 % 1.86 %	
JUJ KFa	IUUI KFa	490 KFa	450 KF d	4/1 KFa	5450 Kr	a	550 KF 6	a 10.550	4300 KFa	1.00 %	
					ILURE EN						
			Interpreta		ween stages :	1 to 2	2 to 3		1 to 3		
			ol		sion C' (kPa) :	135.2	489.9		240.1		
		Angle of	Snear Res		Φ' (Degrees) : ailure Criteria:	56.5 Peak Pr	45.2 incipal Stres	s Ratio	51.4		
				Гс	anure Griteria.	FEAKFI	incipal Siles				
Remarks: Sample/s supplied I	Tested as Re	ceived							Page	e 1 of 7	
biolo subbiod i	.,								-	203001	
										\checkmark	
Accredited for compliance with ISO/IEC 17025 - Testing.											
The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.											
Goodin							C. C	Channon	TEC		
Tested at Trilab Brisbane Laboratory.							Laborato	ry Number			

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

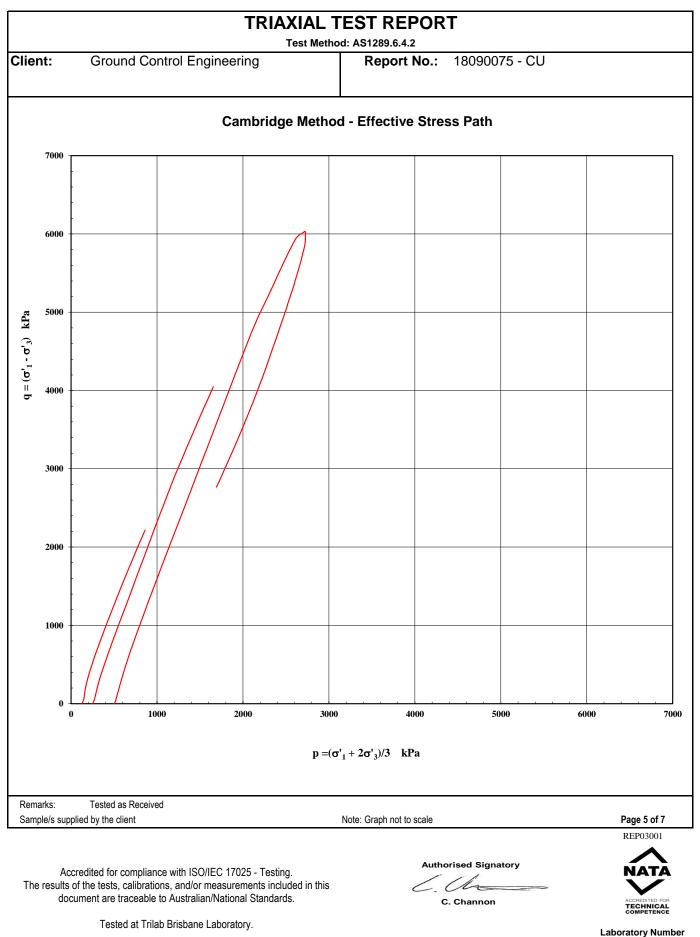
Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323



The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

9926



The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

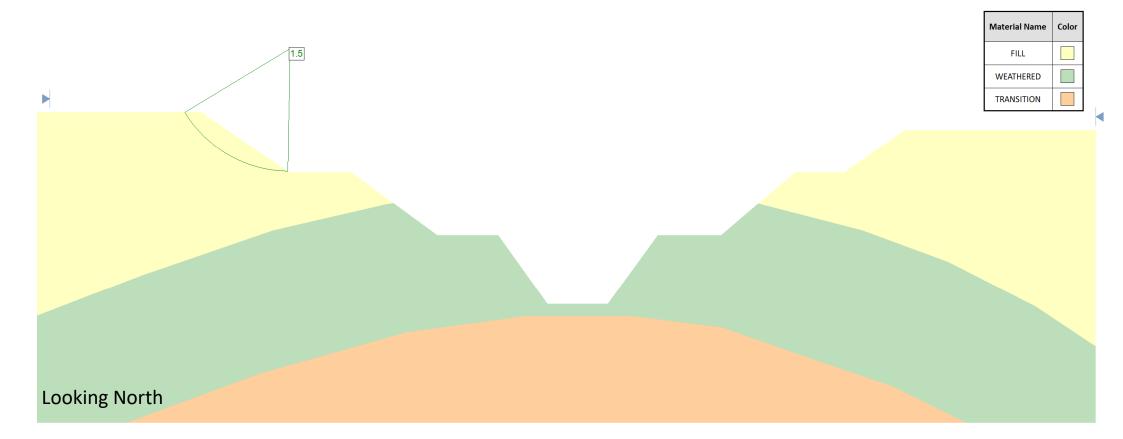
Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

9926

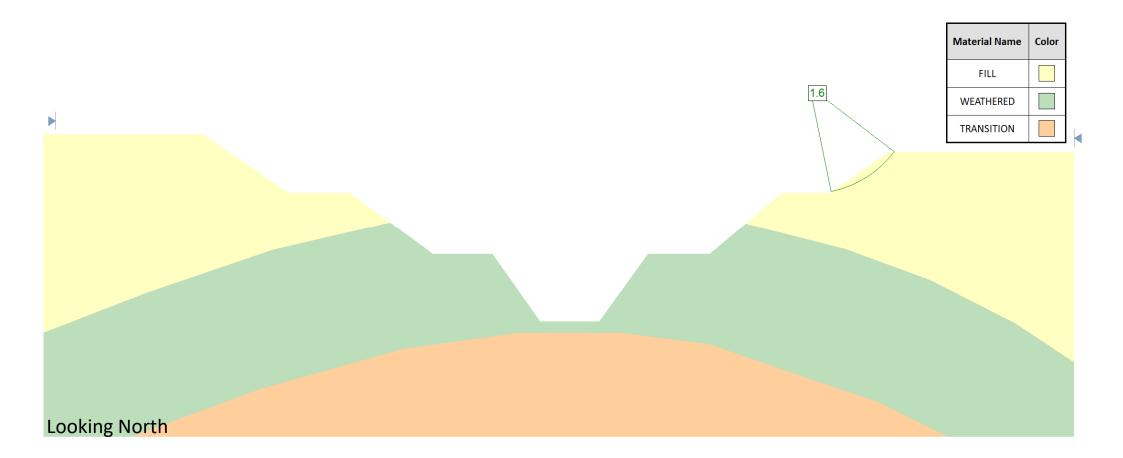
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

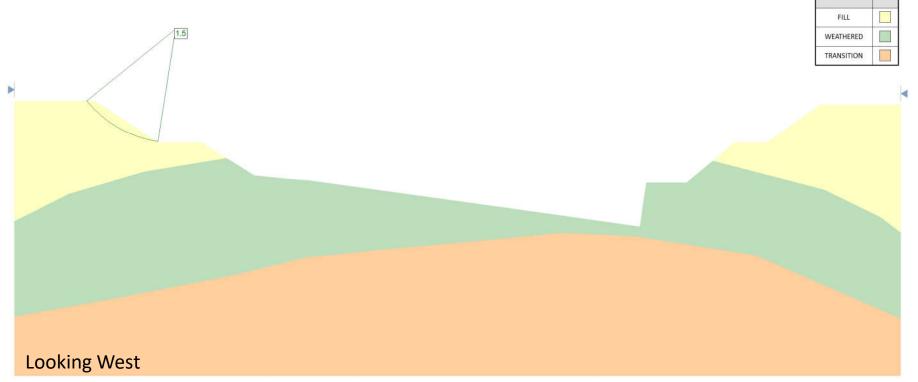
_		TRIAXIAL TE Test Method:	AS1289.6.4.2	RT		
lient:	Ground Control Engi	neering	Report No.	Report No.: 18090075 - CU		
	CLIENT:	Cround Control F	nginooding			
- 1		Ground Control E				
- 1	PROJECT:	Rasp Mine - Brok	en Hill	BEFORE TEST		
- 1	LAB SAMPLE No.	18090075		DATE: 109/18	100	
	BOREHOLE:	MLDD3877		DEPTH: 48.60-48.80		
- 1	CLIENT:	Ground Control		2) //		
- 1	PROJECT:	Rasp Mine - Bro	ken Hill	AFTER TEST		
- 1	LAB SAMPLE No	. 18090075		DATE: 08/10/18		
- 1	BOREHOLE:	MLDD3877		DEPTH: 48.60-48.80		
Remarks:	Tested as Received supplied by the client		ote: Photo not to scale		Page 6 of 7	
		TN.			REP03001	
	Accredited for compliance with ISO/IE Its of the tests, calibrations, and/or me		Authori	sed Signatory		
	document are traceable to Australian/		C.	Channon		


Tested at Trilab Brisbane Laboratory.

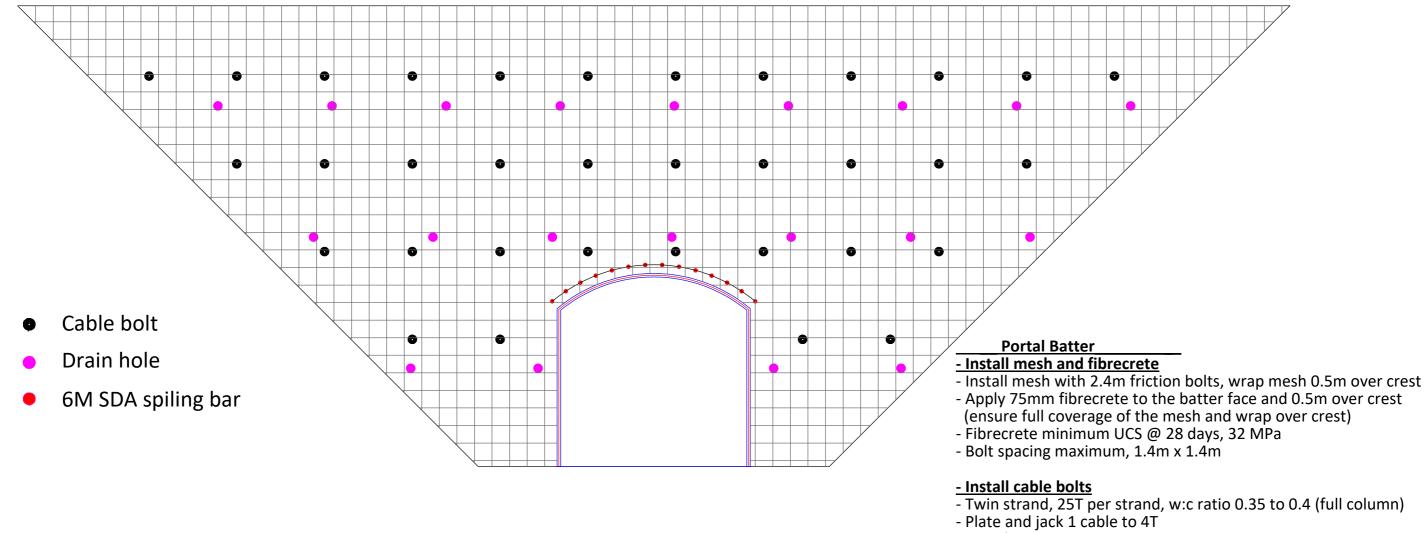
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

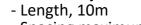

Laboratory Number 9926

Appendix B Slide Model Results


West Wall Model Results - Factor of Safety

East Wall Model Results - Factor of Safety




Material Name

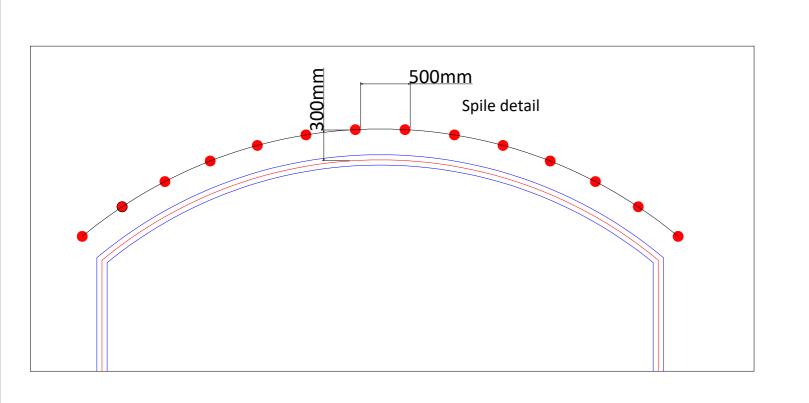
Color

Appendix C Portal Batter Ground Support Design

PORTAL FACE GROUND SUPPORT REQUIREMENTS

- Spacing maximum, 2.5m x 2.5m
- Crest to top row of cable bolts, 2.0m

- Install spiling bars

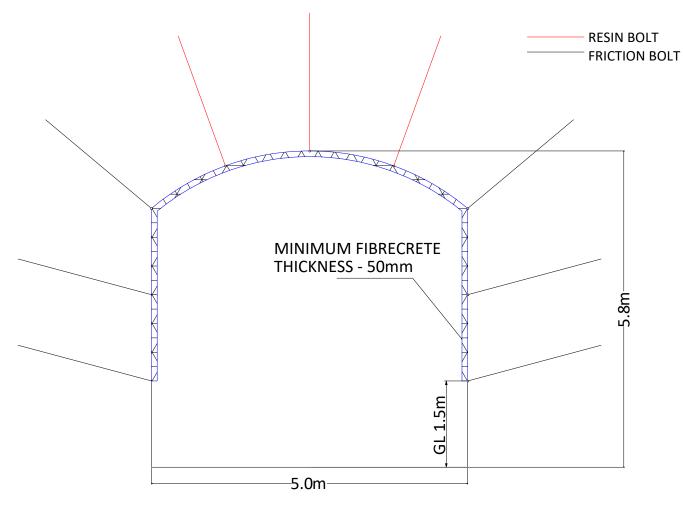

- Install prior to firing decline face
- 9m long, (2 x 3m coupled R32N bars)
- Overlap between spiles 2.0m
- Drill holes 5 degrees up.

- Drain holes

- Drill drain holes 5 degrees up
- Spacing 3.5m x 3.5m
- Top row to crest 2.8m

Side walls

- Spacing maximum, 1.4m x 1.4m
- Apply minimum 75mm fibrecrete to mesh



- Grout spiles with OPC with w:c ratio 0.35 to 0.4 (full column)

- Drill drain holes to 6.0m depth, drain hole diameter 45mm

- Mesh sidewalls with 2.4m friction bolts, wrap mesh 0.5m over crest. (ensure full coverage of the mesh and wrap over crest) - Minimum extent of sidewall coverage - 6.0m back from portal entrance. Appendix D Decline Ground Support Designs

CBH Resources Limited

RASP MINE

PROFILE A GROUND SUPPORT STANDARD F1

PROFILE: 5.8mH x 5.0mW ARCH MINIMUM GROUND SUPPORT REQUIREMENTS FOR GOOD GROUND CONDITIONS

REFER TO TARP FOR POOR GROUND CONDITIONS IF GROUND CONDITIONS ARE POOR (PTO)

SPECIFICATIO	ONS	
DRILLING DETAILS	HOLE DIAMETER FRICTION BOLT RESIN BOLT HOLE DEPTH COLLAR TOLERANCE ROW & RING SPACING	45mm 32mm 2.4m 100mm 1.5m
RESIN BOLT	BOLT LENGTH NOMINAL DIAMETER MINIMUM YIELD STRENGTH	2.4m 20mm 195 KN
FRICTION BOLT	BOLT LENGTH NOMINAL DIAMETER YIELD CAPACITY - MINIMUM	2.4m 46mm 130 KN
FIXTURES	DOMED PLATES STUBBY BOLTS	150mm X 150mn X 5mm 39mm x 0.9m
FIBRECRETE	UCS (28 DAY) MINIMUM TOUGHNESS FIBRE TYPE FIBRE DOSAGE MINIMUM THICKNESS	40 MPa 400 J STEEL 40 KG/M3 50 MM

GEOTECHNICAL ENGINEER	UNDERGROUND SUPERINTENDENT	MANAGER MINING	DATE

NOT TO SCALE