

Broken Hill Operations Pty Ltd ABN 95 103 555 862

Rasp Mine

Annual Environmental Management Report

REPORTING PERIOD

1 January 2020 - 31 December 2020

Rasp Mine 1 of 93

This page has been left blank intentionally.

Rasp Mine 2 of 93

Title Block

ken Hill Operations Pty Ltd 07_0018 (MOD1, MOD2, MOD3 D4, MOD 5, MOD7) ken Hill Operations Pty Ltd solidated Mining Lease 7 ing Purpose Leases 183, 184, 185, 186 ken Hill Operations Pty Ltd
D4, MOD 5, MOD7) Ken Hill Operations Pty Ltd Isolidated Mining Lease 7 Ing Purpose Leases 183, 184, 185, 186 Ken Hill Operations Pty Ltd
isolidated Mining Lease 7 ing Purpose Leases 183, 184, 185, 186 ken Hill Operations Pty Ltd
ken Hill Operations Pty Ltd
ken Hill Operations Pty Ltd
)
//\752822
VAT 32023
ken Hill Operations Pty Ltd
P Completion Date:
September 2021
MR End Date: 31/12/2020
nd accurate record of the compliance status ecember 2019 (Reporting Period) and that I en Hill Operations Pty Ltd.
on Roberts
nior Environmental Advisor
Valle

This page has been left blank intentionally.

Rasp Mine 4 of 93

CONTENTS

1. IN	TRODUCTION	9
2.2	Location	9
1.1	Mine Level	10
1.2	Approvals	10
1.3	Mine Contacts	12
1.4	Actions required from previous AEMR	12
2. OF	PERATIONS SUMMARY	13
2.1	Exploration	13
2.1.	.1 Surface exploration	13
2.1.	.2 Underground exploration	13
2.2	Land Preparation	13
2.3	Construction	14
2.3	.1 New buildings / structures	14
2.4	Mining	15
2.4.	.1 Mine access	15
2.4.	.2 Mining method and sequence	15
2.4.	.3 Void backfilling	15
2.4.	.4 Waste rock and void backfilling	15
2.4.	.5 Underground decline development	15
2.4.	.6 Ore and waste stockpiles	16
2.5	Mineral Processing	18
2.5.	6	
2.5.	.2 Mill operating hours	18
2.5.		
2.6	Mining Fleet	
2.7	Next Reporting Period	20
2.7		
	.1.1 Construction of the Stage 2 TSF2 Embankment Works	
2.7	in a second	
2.7.	- Production	
2.7.		
2.7.	.5 Modification applications	21
3. EN	NVIRONMENTAL MANAGEMENT AND PERFORMANCE	24
3.1	Meteorological	24
3.2	Environmental Monitoring Locations	24
3.3	Air Quality	25
3.3.	.1 In-stack air quality	27
3.3.	.2 Dust deposition gauges	28
3.3.	.3 High volume air samplers	34
3.3.	.4 TEOM monitors	41
3.4	Erosion and Sediment	45
3.5	Surface Water	45
3.5		
3.6	Groundwater	48
3.7	Contaminated Land	66
3.8	Hydrocarbon and Chemical Management	66

3.8.2	1 Fuel	66
3.8.2	2 Grease, oils and lubricants	66
3.8.3	3 Solvents	66
3.8.4	4 Processing reagent storage	66
3.9	Hazardous Material Management	67
3.9.1	1 Licensing	67
3.9.2	2 Dangerous goods management	67
3.10	Waste Management	67
3.10	.1 Mineral wastes	68
3.10	.2 Non-mineral waste	68
3.11	Flora and Fauna	68
3.12	Weeds	69
3.13	Blasting	69
3.14	Operational Noise	73
3.15	Visual, Stray Light	75
3.16	Indigenous Heritage	75
3.17	Natural and Social Heritage	75
3.17	7.1 Conservation management strategy	75
3.18	Spontaneous Combustion	76
3.19	Bushfire	76
3.20	Mine Subsidence	76
3.21	Methane Drainage/Ventilation	76
3.22	Public Safety	77
3.23	Radiation	77
4. WA	ATER MANAGMENT	78
	HABILITATION	
0, ,,=		
5.1	Buildings	
5.2	Rehabilitation and Disturbed Land	79
6. CO	MMUNITY RELATIONS	81
6.1	Environmental Complaints	81
6.2	Date of Complaint	82
6.3	Reason for Complaint	82
6.4	Comment	82
6.5	Community Liaison	90
6.6	Community Support	90
7. INE	DEPENDENT AUDIT	91
8. INC	CIDENTS AND NON-COMPLIANCES DURING THE REPORTING	PERIOD
92		
9. AC	TIVITIES PROPOSED IN THE NEXT AEMR PERIOD	93
TABLE	es	
	1 Rasp Mine - Current Approvals	10
	1 Production Summary – Cumulative	
rable 3-7	1 Summary of Wind and Rain Days in Reporting Period (2020)	24

Table 3-2 Summary of BHOP Environmental Compliance Monitoring Program	25
Table 3-3 Vent and Baghouse Testing Results During the Reporting Period	28
Table 3-4 Dust Deposition Criteria	28
Table 3-5 Dust Deposition Results for the Reporting Period (g/m²/month)	30
Table 3-6 Impact Assessment Criteria	34
Table 3-7 PM10 Assessment Criteria	41
Table 3-8 Surface Water Monitoring Requirements	45
Table 3-9 Stormwater Pond Water Quality Results for the Reporting Period (2020)	46
Table 3-10 Water Containment Structures	48
Table 3-11 Location and Function for Groundwater Monitoring Points	49
Table 3-12 Bore Piezometer Depths	50
Table 3-13 Piezometer Monitoring Results for the Reporting Period (2020)	52
Table 3-14 Groundwater Monitoring Results for Shaft 7 and Mine Dewatering for the Reporting Pe (2020)	
Table 3-15 Waste Summary - 2020	68
Table 3-16 Overpressure and Ground Vibration Western Min/Main Lodes (excluding Block 7)	69
Table 3-17 Overpressure and Ground Vibration Block 7 (includes Zinc Lodes)	70
Table 3-18 Western Mineralisation/Main Lodes Summary of Blasts for Reporting Period (2020)	71
Table 3-19 Western Mineralisation/Main Lodes Blasts > 5 mm/s for the Reporting Period (2020)	71
Table 3-20 Block 7 (and Zinc Lodes) Summary of Blasts for the Reporting Period (2020)	72
Table 3-21 Block 7 Blasts Exceeding 3 mm/s for Reporting Period (2020)	72
Table 3-22 Ground Vibration Results at Vibration Monitors for the Reporting Period (2020)	72
Table 3-23 Operational Noise Criteria	74
Table 3-24 Noise Monitoring Results	75
Table 3-25 Regulated Radiation Equipment	77
Table 4-1 Flow Meters and Recording Frequency	78
Table 5-1 Rehabilitation Summary	80
Table 5-2 Maintenance Activities on Rehabilitated Land	80
Table 6-1 Complaints register	82
FIGURES	
Figure 1-1 Location Map – Plan 1	9
Figure 3-1 Weather Data for the Reporting Period (2020)	
Figure 3-2 Location of Compliance Monitoring / Sampling Points	
Figure 3-3 Monthly Total Deposited Dust for 2020	
Figure 3-4 Monthly Lead Deposition for 2020	21

Figure 3-5 Total Deposited Dust 2007 – 2020	. 32
Figure 3-6 Total Deposited Lead 2007 to 2020	. 33
Figure 3-7 HVAS TSP Results for the Reporting Period (2020)	. 35
Figure 3-8 HVAS TSP-Lead Results for the Reporting Period (2020)	. 35
Figure 3-9 HVAS TSP and TSP-Lead Results for the Period 2008 to 2020	.37
Figure 3-10 HVAS1 PM₁₀ Results for the Reporting Period (2020)	.38
Figure 3-11 HVAS1 PM ₁₀ -Lead Results for the Reporting period (2020)	. 39
Figure 3-12 HVAS1 &HVAS2 PM10 Annual Average Results for the Period 2011 to 2020	.40
Figure 3-13 HVAS1 & HVAS2 PM10-Lead Annual Average Results for the Period 2011 to 2020	.40
Figure 3-14 TEOM1 PM10 24-hour Average Results for the Reporting Period (2020)	. 43
Figure 3-15 TEOM1 PM10 Annual Rolling Average for the Reporting Period (2020)	. 43
Figure 3-16 TEOM1 & TEOM2 PM10 Annual Rolling Average Results for the Period 2013 to 2020	. 44
Figure 3-17 Groundwater Quality Results for Sampled Parameters for the Period 2012 to 2020	. 55
Figure 3-18 Shaft 7 & Mine Dewatering Results for Sampled Parameters - Period 2012 to 2020	.61

PLANS

Plan 1a: Mine and Context - Location

Plan 1b: Mine and Context - Detail

Plan 2: Leases

Plan 3: 2020 Mining Long Section

Plan 4: Surface Water Management Plan

Plan 5: Final Rehabilitation Domains

Rasp Mine 8 of 93

1. INTRODUCTION

The Annual Environment Management Report (AEMR) documents the environmental performance of the Rasp Mine for the reporting period 1 January 2019 to 31 December 2019. It has been prepared in accordance with the NSW Government *EDG03 – Guidelines to the Mining, Environmental, Rehabilitation and Environmental Management Process.*

Figure 1-1 Location Map - Plan 1

2.2 Location

The Rasp Mine is owned and operated by Broken Hill Operations Pty Ltd (BHOP), a wholly owned subsidiary of CBH Resources Ltd (CBH). The Mine is located on Consolidated Mine Lease 7 (CML7) within the City of Broken Hill and includes several Mining Purposes Leases (183,184,185 and 186) with the entire Project extending over Western Land Leases and freehold properties.

The Rasp Mine consists of underground mining operations, a processing plant producing zinc and lead concentrates, a rail siding for concentrate dispatch to shipping facilities within Australia as well as other mining ancillary facilities. In the reporting period all concentrate product was placed in sealed containers and transported by rail to either the Port of Newcastle NSW or smelter operations in Port Pirie SA. Rasp Mine is approved to produce 750,000 tpa of ore and 8,450,000 tonnes of ore over the life of the Project to December 2026.

The Mine is located centrally within the City of Broken Hill (Figure 1-1) and is surrounded by transport infrastructure, areas of commercial and industrial development and some residential housing. The Mine is bounded by Eyre Street to the southeast, Perilya Broken Hill Operations Pty Ltd (Perilya) North Mine to the east and Perilya's South Mine to the west, and the commercial centre of Broken Hill to the north. Two major State roads dissect CML7 - South Road (Silver City Highway SH22) to the southwest and Menindee Road (MR66) to the northeast. These roads form part of the existing road

Rasp Mine 9 of 93

train and B-double routes through Broken Hill. Mawson's Quarry lies to the east of the existing processing plant. The Broken Hill railway station is located within CML7 on a surface exclusion with the main Sydney – Perth railway line also located within the Lease on various surface exclusions. Residential and commercial areas surround the mine with pastureland to the southeast. An aerial view of CML7 is provided in **Plan 1**, **Figure 1-1**.

The mining leases occupy a central region of the historic Broken Hill Line of Lode ore body incorporating the original mine areas that commenced operations in the 1880s including a substantial amount of mining infrastructure from various mining phases. The Mine was the birthplace of Broken Hill Pty Ltd (BHP) in 1885. Subsequently several mining companies, including Broken Hill South and Minerals Mining and Metallurgy Ltd (MMM), have operated the mine. This past mining has left the mining lease highly modified and disturbed. The original landform has been significantly altered; the majority of native vegetation removed and soils have been degraded and covered with waste rock.

There are a number of heritage items on the site relating to historic mining activities and the site is recorded on the Register of National Estate for its heritage values. The people of Broken Hill consider the mine as an important historic site for its role in Broken Hill's history. The Broken Hill Miners Memorial and Broken Earth Café are located centrally within CML7.

The CML7 boundary is shown in Plan 2, which also indicates surface exclusion areas and MPLs. The Project Area includes additional areas to the southeast located on Western Land leases or freehold properties owned or leased by BHOP (highlighted in orange). Located in this area are the current Rasp Mine administration offices and stores.

The AEMR is distributed to a range of stakeholders that include government authorities and is available on the CBH website at: www.cbhresources.com.au.

1.1 Mine Level

The Rasp Mine is classified as a Level 1 Mine and in 2018 it was transitioned to a State Significant Development under the *EP&A Act* with development consent determined and authorised by the Minister for the Department of Planning and Environment.

1.2 Approvals

Error! Reference source not found. provides a list of all current development consents, mining eases and licences held by the Rasp Mine.

Approval Number Date Issued Expiry Purpose Project Approval 31 Jan 2011 31 Dec 2026 Mining production of 750,000 tpa from Western 07 0018 (Part 3A) Mineralisation, Centenary Mineralisation and Main Lode Pillars, Construction and operation of minerals processing plant and rail load out facility. Supported by an EAR and PPR. MOD1 - relocation of primary ventilation shaft MOD2 - 24 hour operation of crusher MOD3 – Mining of Block 14 (Zinc & Main Lodes) MOD 4 – Installation of Concrete Batching Plant and Extension to TSF2 MOD5 - Warehouse Extension, Cement Silo and adjustment of air quality monitoring MOD7 - Utilise, crush and screen waste rock in BHP Pit for Embankments construction. CML7 Granted 8 Oct 1987. As per Schedule 2 of the 17 Jan 2007 31 Dec 2026 Lease - Open cutting, shaft sinking, stoping, tunnelling, building of dams, extraction and obtaining minerals, generation of electricity, erecting dwellings, storage of fuels, dumping of ore, treatment and dumping of tailing, development of roads

Table 1-1 Rasp Mine - Current Approvals

Rasp Mine 10 of 93

Approval Number	Date Issued	Expiry	Purpose
MPL 183	24 Apr 2007	31 Dec 2026	Granted 4 Feb 1981. Dumping of ore and mine residues, treatment of tailing
MPL 184	24 Apr 2007	31 Dec 2026	Granted 4 Feb 1981. Dumping of ore and mine residues, treatment of tailing
MPL 185	24 Apr 2007	31 Dec 2026	Granted 4 Feb 1981. Dumping of ore and mine residues, treatment of tailing
MPL 186	24 Apr 2007	31 Dec 2026	Granted 4 Feb 1981. Dumping of ore and mine residues, treatment of tailing
EPL 12559	EPA	Upon surrender, suspension or revocation.	Authorises the carrying out of scheduled activities: Crushing , grinding or separating >500,000 - 2,000,000T processed. Mining for minerals >500,000 - 2,000,000T produced.
Dangerous Goods Explosives	Work Cover	24 Oct 2022	Store Manufacture
Refrigerant	Refrigerant Trading Council	27 Mar 2022	Use of refrigerant
Water extraction 85WA752823	NOW	29 Mar 2027	To extract 370 ML for use on site or to send to Perilya Broken Hill Operations Pty Ltd.
Radiation #5063802	EPA	26 July 2020	Sell and/or possess radiation apparatus. Sell and/or possess radioactive or items containing radioactive substances.

The Rasp Mine has an approved Mining Operations Plan (MOP) currently in place for the period 1 October 2020 to 30 September 2021. An extension of the MOP for 12 months was granted on 25 September 2019 as updated guidelines on MOP preparation are expected to be finalised in 2020 and the revised MOP can be submitted in the updated format. The AEMR, as required by the mining leases, incorporates reporting against this MOP.

The Rasp Mine has developed a number of environmental management plans as required by PA07_0018. **Table 1-2** provides a list of these Plans together with the approval dates for each.

Table 1-2 Status of Environmental Management Plans

Environmental Management Plan	Condition	Approved
Environment Management Strategy	Sched 4 Cond 1	Jun-19
Air Quality Management Plan	Sched 3 Cond 11	Jun-19
Community Lead Management Plan	Sched 3 Cond 13	Mar-16
Noise and Blast Management Plan:		
- Noise Management Plan	Sched 3 Cond 20	Jun-19
- Technical Blasting and Vibration Management Plan		Jun-19
Site Water Management Plan	Sched 3 Cond 23	Jun-19

Rasp Mine 11 of 93

1.3 Mine Contacts

Table 1-3 outlines the contacts for the Rasp Mine.

Table 1-3 Mine Contacts

Name	Title	Contact Details	
Visko Sulicich	BHOP Director CBH Chief Operating Officer	T: 08 8088 9106 viskosulicich@cbhresources.com.au	
Gwen Wilson	CBH Group Manager – Safety Health Environment Community	M: 0431 483 825 gwenwilson@cbhresources.com.au	
Giorgio Dall'Armi	BHOP General Manager	T: 08 8088 9102 giorgiodallarmi@cbhresources.com.au	
Joel Sulicich	BHOP Health Safety Environmental and Training Manager	T 08 8088 9125 joelsulicich@cbhresources.com.au	
Devon Roberts	BHOP Senior Environmental Advisor	T 08 8088 9126 devonroberts@cbhresources.com.au	
Complaints Line	Health, Safety and Environment Office	T: 08 8088 1211	

1.4 Actions required from previous AEMR

Item	Action	Status
1	Development of the rehabilitation strategy through evidence-based studies containing options analysis, involving use of innovative rehabilitation or best practice, to demonstrate the feasibility or not, of rehabilitation options for areas classed as 'non-vegetative outcomes.'	Incomplete

A rehabilitation strategy has not been finalised although a draft Options Analysis for rehabilitation at Rasp Mine was developed in 2018 by Mine Earth. The draft report included a revegetation assessment (with a review of previous revegetation programs) and recommendations for rehabilitation trials. BHOP was considering expanding the Options Study as a project with the Centre for Mined Land Rehabilitation, University of Queensland, however, BHOP has decided to put the project on hold due to the lack of feedback from the Minister for Cabinet Interagency Panel on the Line of Lode. Guidance from the Resources Regulator following the Department of Premier & Cabinet Broken Hill Post Mining Interagency meeting held in Broken Hill on 13 and 14 August 2019 is still forthcoming. During the Interagency meeting there was agreement that paddock dumping of waste rock on free areas may be a suitable method of capping them. Following the Resources Regulator Targeted Assessment Program (TAP) audit for Soils and Minerals in November 2020, BHOP are working to assess the volumes of suitable waste rock required for free area coverage and other surface usage purposes. The Draft Options Study developed in 2018 will be amended in accordance with the MOD6 Development Application to be finalised and submitted early in 2021.

BHOP have developed a procedure for-testing of waste rock samples by lab analysis using a hand-held XRF device employed to classify waste materials used on surface and in the TSF2 Embankment works. Material tested using an XRF are sub-sampled to form a composite sample which is sent to a lab for analysis. By having samples analysed at a lab the material can be identified as suitable for use, but most importantly to generate a model of XRF accuracy. A consulting Geo-Technical firm will be conducting an analysis of the XRF accuracy with lab analyses of the tested samples in 2021.

Rasp Mine 12 of 93

2. OPERATIONS SUMMARY

During the 2019 reporting period, the Project Approval was modified (MOD7) to permit the crushing of waste rock in the BHP Pit for the purposes of providing suitable fill material for TSF2 Embankment construction.

Table 2-1 outlines the production summary for the reporting period. Predictions for the next reporting period are taken from the planned 2020 budget.

Material	Approved Limit	Start of reporting period	At end of reporting period	End of next reporting period
Waste rock	NA	2,601,599	2,939,819	3,123,905
Ore	750,000	4,944,453	5,496,850	6,049,248
Processing waste (Tailings)	NA	4,290,534	4,759,583	5,143,806
Product (Concentrates)	NA	576,375	638,153	705,435

Table 2-1 Production Summary – Cumulative

2.1 Exploration

2.1.1 Surface exploration

Consistent with the drilling programs proposed in the MOP, the Rasp Mine completed a surface drilling program across CML7. The primary exploration focus remained on underground diamond drill testing for continuations/extensions of both the Western Mineralisation and the Main Lode remnant zones. Surface exploration programs targeting the characterisation of various Main Lode Remnant and Extensional Targets were also completed early in the reporting period.

The program was located on land already disturbed by historic mining and no vegetation was removed. Top soils had already been removed from the area by historic mining activities. The drill pads were installed off existing tracks with minimal earthworks required.

No surface rehabilitation activities were undertaken on CML7 during the reporting period as the drill pads were still operational, although drill holes have been capped.

In 2021, exploration on CML7 will target the Western Mineralisation, No 2 and 3 Lens Main Lode remnants, further extensional targets near the base of McCulloch's, McBryde's, Blackwood's, and Zinc Lodes areas.

2.1.2 Underground exploration

During the reporting period, 44,499m of underground diamond drilling was completed:

The 2020 program will continue to focus on the Western Mineralisation and Main Lodes 2 Lens and 3 Lens.

2.2 Land Preparation

Routine maintenance of roads was undertaken as required which includes the application of dust suppressant to infrequently used roads.

Boundary fencing was also inspected and repaired.

Rasp Mine 13 of 93

2.3 Construction

2.3.1 New buildings / structures

Construction woks for Stage 1 of the Blackwoods Pit TSF2 embankment raise were completed in April 2020 and practical completion was in November 2019 with the widening of the Stormwater storage pond. The Stage 1 works comprised of:

- Construction of the Embankment 1 starter bank
- Construction of Embankment 2
- Construction of the Stormwater Management System
- Construction of the emergence spillway.

Embankment 1 construction involved the construction of an access road from the waste stockpile to the South, excavation of existing fill mounds, rectification of cracks in the basement rock, and installation of a seepage outlet pipe.

Embankment 2 construction involved the excavation, conditioning and placement of the fill material from the Embankment 2 footprint. The embankment were constructed of rock fill, select rock fill and screened rock fill, as well as layer of filter sand with a seepage collection system and the installation of a HDPE liner on the upstream side of the embankment.

The Emergency Spillway consists of a subgrade drain, sill beam, spillway chute, seepage sump, and concrete access road across the spillway.

The Stormwater Management System for Embankment 2 consists of two drains feeding to a stormwater pond. A spillway was installed at the northern end of the stormwater pond.

Construction works for Stage 2 of the Blackwoods Pit TSF2 embankment raise were commenced in July 2020 with the continuation of raising Embankment 1 and commencing the construction of Embankment 3. As with Embankment 2, Embankments 1 and 3 were constructed of rock fill, select rock fill and screened rock fill, and the installation of HDPE liner on the upstream sides of the embankments will commence in February 2021.

During construction activities at Embankment 1, Jamieson House (managed by the Broken Hill Historical Society) is inspected weekly by BHOP staff for cracking and other damage as a result of construction activities, and a vibration monitor was situated next to the house to monitor vibration, particularly from the use of a vibrating roller.

A blast monitor was installed on a concrete plinth adjacent to the Embankment 2 to monitor blast vibration in June 2020 to satisfy the Dam Safety Committee requirement for a monitor to be installed on each Embankment. The trigger limit has been set at 30 mm/s with the highest recorded result at this monitor being 1.05 mm/s to the end of 2020.

The works design was prepared and monitored by Golder Associates Pty Ltd (Golder). Golder are also the Geotechnical Inspection and Testing Authority overseeing quality assurance for the works.

Rasp Mine 14 of 93

2.4 Mining

2.4.1 Mine access

All mining is undertaken underground accessed via the existing portal located at the northern end of Kintore Pit. Mining activities included mining of the Western Mineralisation, Main Lode Pillars and Zinc Lode.

Mining activities were undertaken as follows and met the requirements of the Project Approval:

- Underground operations, 24 hours per day, 7 days per week;
- Truck haulage of ore from underground to ROM Pad 24 hours per day, 7 days per week;
- Production rock blasting between 6.45 am to 7.15 pm, 7 days per week;
- Development blasting concurrently with production blasting where practicable;
- Ventilation fans, 24 hours per day, 7 days per week;

2.4.2 Mining method and sequence

A variety of production methods are utilised, including open stoping (OS), uphole benching, room and pillar and uphole pillar retreat mining. OS is the most prevalent method used in the Western Mineralisation, uphole stoping (with room and pillar) and uphole pillar retreat in the Main Lode Pillars.

The ore was blasted using a bulk emulsion explosive and extracted using load haul dump vehicles (LHD's) either conventionally or under remote control and transported to loading points where mine trucks transported ore to the ROM pad.

A total 552,398 t of ore was mined during the reporting period. This resulted in approximately 12,275 truck movements to the ROM pad. **Figure 2-2** (**Plan 3**) provides a long section indicating location of the stopes mined in 2020. A vertical distance of 64 m was maintained (in the Zinc Lodes) from South Rd/Bonanza Street.

Figure 4-2 provides a long section for planned stopes in 2021.

2.4.3 Void backfilling

Waste rock was used to backfill mined out stopes with a total of 318,816 t placed during the reporting period. The backfill plant did not operate during the reporting period and no tailings were placed underground.

2.4.4 Waste rock and void backfilling

Waste rock is generated from underground mining operations and is predominantly used underground for backfilling stopes and maintenance of underground roads. During the reporting period 338,220 t was extracted as waste, 318,816 t of waste rock was used underground as void fill, and 147,481 t stockpiled in Kintore Pit (to be used underground as rockfill) and BHP Pit (19,404 t) to be crushed and used in embankment construction. At the end of the reporting period, the waste stockpile in Kintore Pit held approximately 1,200,000 t.

Waste rock is also used for road making and repairs underground.

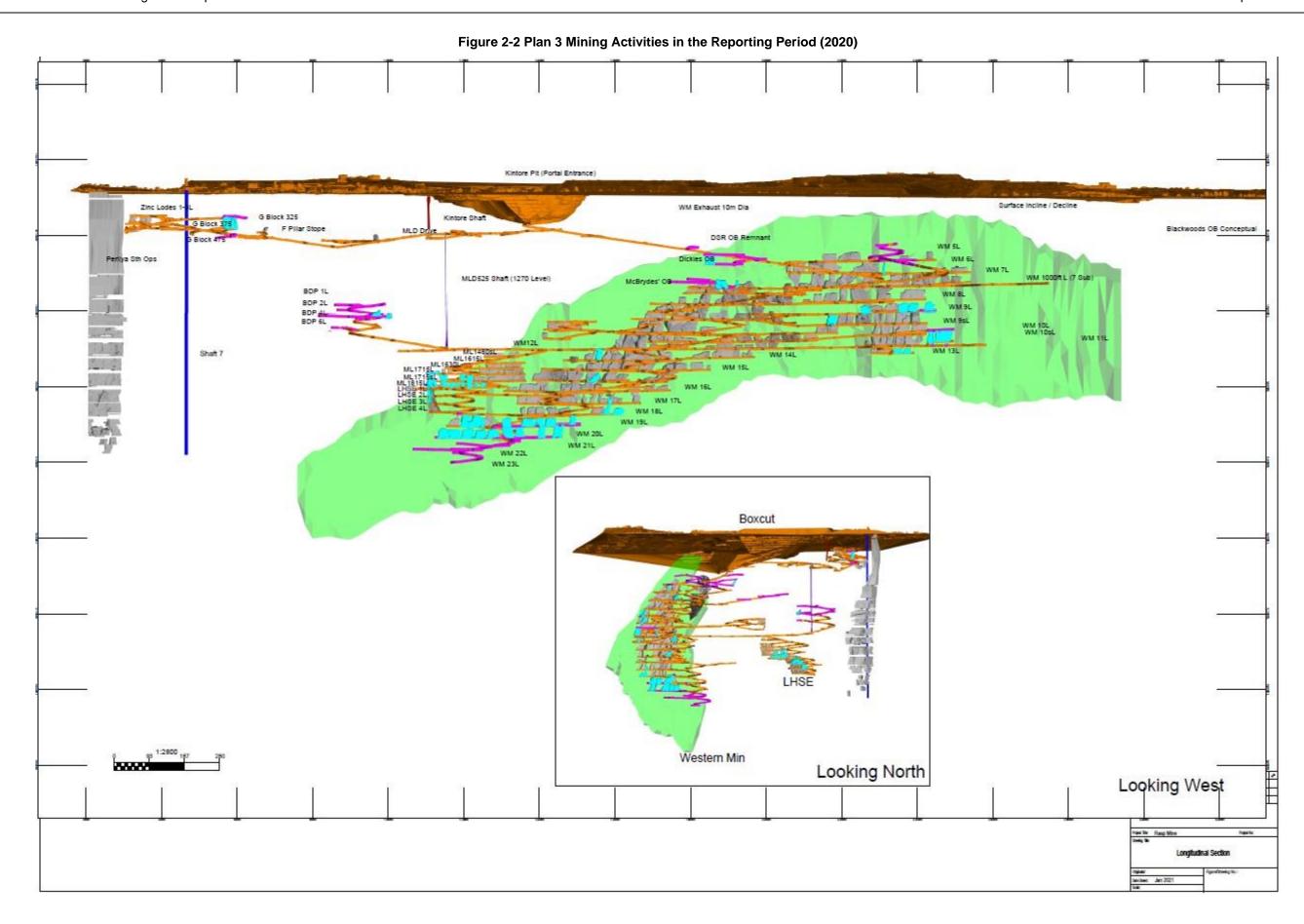
Block modelling is used to identify underground waste material sources. Underground diamond drilling results and assays assist the geological technicians to identify waste materials earmarked for surface.

2.4.5 Underground decline development

The Rasp Decline provides access to stopes for mining. During the reporting period, the Decline was extended by 152.6 m providing access to the Western Mineralisation 23 Level, and the incline to Dickenson's Orebody (DOB) extended by 401.8 m.

Rasp Mine 15 of 93

2.4.6 Ore and waste stockpiles


Ore was transported by truck and stored on the ROM Pad before being processed. The ROM Pad is 32 m by 80 m and is surrounded by 5 m windbreaks. Water application was used to control dust. No more than a week's processing was stored on the ROM stockpile at any one time. Mined ore was below the approved maximum rate of 750,000 tpa. Closing ore stockpiles on the ROM pad at the end of the reporting period totalled 0 t.

Ore and waste production for the reporting period is summarised in **Table 2-2** Ore and Waste Summary for the Reporting Period (2020).

Table 2-2 Ore and Waste Summary for the Reporting Period (2020)

Item	Total Production Tonnes
Topsoil Stripped	N/A
Topsoil Spread	N/A
Ore Tonnes Mined: Dry Tonnes	552,398
Waste Backfill (UG voids): Tonnes	318,816
Waste Trucked to Kintore Pit	147,481

Rasp Mine 16 of 93

Rasp Mine 17 of 93

2.5 Mineral Processing

2.5.1 Processing methods and rates

All mined ore is processed on site in the processing plant. This consists of a single stage crushing circuit with a two stage Semi-Autogenous Grind (SAG) – Ball milling circuit capable of processing ore at the required rate and to the required grind size. Material then passes through differential flotation, which incorporates conventional roughing, scavenging and multi-stage cleaning and includes concentrate regrind, to separate lead and zinc concentrates. Concentrates are dewatered using thickeners and pressure filtration. The filtered concentrates are conveyed directly into containers and sealed. The concentrate is stored in these sealed containers in readiness for loading onto rail wagons for transport to the CBH ship loader in Newcastle, NSW or to the Nyrstar Pty Ltd smelter at Port Pirie, SA. In 2020 all zinc concentrate was sent via rail to the ship loader, and all lead concentrate was sent via rail to the smelter.

Reagents used in the process included pulp pH modifier, flotation frothers, collectors, activators and depressants, used in various combinations in the lead and zinc flotation circuits. Flocculants are used in concentrate and tailing dewatering.

A summary of mineral processing production rates for the reporting period is presented in Table 2-3.

Activity	Total (t)
Milled	530,827
Lead concentrate	20,482
Zinc concentrate	41,296
Tailings deposited	469,049
Tailings Storage Facility (TSF2) storage capacity as at end of period	October 2023

Table 2-3 Mineral Processing Summary for the Reporting Period (2020)

2.5.2 Mill operating hours

The processing plant operates 24 hours per day in accordance with the Project Approval. Schedule 3 Condition 16 places a restriction on milling activities - (b) *shunting of concentrate wagons shall only occur between 7:00am and 6:00pm on any day.* No shunting of concentrate wagons occurs during the loading or unloading of concentrate containers. Concentrate trains are moved into and out of the loading area by Pacific National operators as one unit and no reordering of wagons occurs. Pacific National conducts this activity twice per week taking 10 to 15 minutes, following inspection of the connection and state of the wagons. Once loaded, the train departs in the same direction as arrival. During the reporting period, there were no community complaints related to this activity.

In July 2020 due to operational changes the Mill began operating on a 8 day on/6 day off campaign.

2.5.3 Mineral waste - tailings

All tailings generated from the processing plant are deposited into Blackwood Pit (TSF2). Tailings from the flotation process are pumped to and deposited at the southwestern end of TSF2 via a duty/standby configuration of centrifugal pumps. Particle solids settle out of the slurry stream along the length of TSF2 in a north-easterly direction. Any excess water collects at the northeast end of the facility.

During the reporting period, 469,049 t of tailings were pumped to TSF2, on average the tailings contained zinc (0.35%), lead (0.21%) and copper (0.01%), Ag (8g/t), Fe (2.97%).

Rasp Mine 18 of 93

In the initial Project Approval, BHOP underestimated the amount of mine development that was required to access the Main Lode and Western Mineralisation ore bodies. The need to undertake more underground mining development than anticipated has reduced the capacity of underground voids to accept both waste rock and tailings material from the Backfill Plant. In the original EA, it was predicted that approximately 250,000 t of waste rock would be produced each year for a production rate of 750,000 t of ore. In 2020 with 552,398 t mined, waste rock produced was 338,220 t. BHOP has chosen to place the additional waste rock underground to fill voids and stopes, as it is more economical to dispose waste rock underground if possible rather than transporting waste to the surface. Hence, there is no void space underground for the backfill of tailings. Some waste rock is diverted to BHP Pit for testing to ensure it contains <0.5% Lead, crushed and used for TSF2 Embankment construction.

BHOP also opted to only deposit tailings in TSF2 as this facility had greater capacity and was economically more viable.

Table 2-4 shows past and proposed tailings deposition and waste rock production rates.

Table 2-4 Summary of Proposed (EA) and Actual Placement of Waste Rock and Tailings

Year (to 30 June)	2012 EA Tailings in Underground back fill per year (t)	2012 EA Tailings deposited in TSF1 (t)	2012 EA Tailings deposited in TSF2 (t)	2012 EA Waste Rock U/G (t)	Actual ¹ / Predicted ² Tailings in TSF2 (t)	Actual waste rock placed underground (t)	Actual waste rock stored Kintore Pit (t)	Actual Total waste rock (t)
2012	97,969	273,281	0	250,000	322,111 ¹	47,527	150,000 ³	197,527
2013	195,938	195,138	0	250,000	574,833 ¹	230,607	150,000 ³	380,607
2014	195,938	195,138	0	250,000	486,749 ¹	223,473	163,304	386,777
2015	216,563	216,563	0	250,000	499,598 ¹	223,611	228,942	452,553
2016 ¹	247,500	88,281	159,219	250,000	555,837 ¹	265,369	96,888	362,257
2017 ¹	292,475	0	278,438	250,000	622,161 ¹	215,897	76,578	292,475
2018 ¹	309,375	0	309,375	250,000	644,828 ¹	332,702	121,864	444,566
2019 ¹	309,375	0	309,375	250,000	578,472 ¹	357,792 ²	134,706 ¹	492,792 ¹
2020 ¹	309,375	0	309,375	250,000	469,049 ¹	318,816	-	338,220
TOTALS	2,174,508	968,401	1,365,782	2,250,000	4,651,289	2.521,281	1,206,896	3,747,581

Note¹: Actual tailings deposited.

Note²: Predicted.

Note³: Estimated from visual inspection at the time.

2.6 Mining Fleet

There were no changes to the mining fleet during the reporting period.

Table 2-5 Mining Fleet 2020

Vehicle Category	Number	Vehicle Category	Number
Jumbo drill	3	Grader	1
Production Drill	2	Excavator	1
Haul Truck	6	Service Vehicle	6
Load Haul Dump	5	Wheel Loader	2
Explosive Charger	2	Prime Mover	2
Forklift IT	7	Light Vehicle	30

Rasp Mine 19 of 93

2.7 Next Reporting Period

2.7.1 Construction

Construction of Stage 2 works for the TSF2 Embankments were undertaken in 2020. These works consisted of Stage 2 of Embankment 1 and construction of Embankment 3.

2.7.1.1 Construction of the Stage 2 TSF2 Embankment Works

Development consent (PA07_0018) MOD4 was granted to construct three embankments and a retaining wall at low points around the perimeter of the Blackwood Pit TSF (TSF2) in September 2017. The preliminary design was endorsed by the NSW Dam Safety Committee in December 2016. The EA and associated studies are available on the CBH website.

Stage 2 TSF2 Embankment works will be completed in 2021 with construction commencing in July 2020. These works consist of:

- Completion of Embankment 1
- Construction of Embankment 3
- Water spray system

The embankments will be formed from compacted waste rock excavated during mining operations and currently stored in Kintore Pit. The rock fill would also be used to form a pioneering layer for raise construction on potentially soft tailing. The testing procedure for lead content of the waste rock is an updated version of the procedure used for the noise bund constructed at the CBP.

The embankments will be lined and seepage collection systems installed. Rainwater from embankments 1 and 2 will be directed to the current stormwater management system.

Golder Associates have been engaged to design the extensions to TSF2 and associated infrastructure are currently completing the detailed design. With the completion of the detailed design, the Site Water Management Plan and Air Quality Management Plan were updated and submitted to the DPE, EPA and DRG for review and approval.

In 2018, BHOP held discussions with the EPA in regards to an air quality monitoring program for the construction period and operations. BHOP updated the Air Quality Management Plan and Monitoring Program, Noise Management Plan, Site Water Management Plan, and Environmental Management Strategy, with the agreed requirements and they have been submitted to the DPE, EPA and DRG for review and approval.

Three portable PM10 monitors were purchased in 2019, with two placed at the western and northern side of TSF2 and one held as a spare. The northern PM10 monitor was installed in Proprietary Square in place of the TEOM, High Volume Air Samplers and Dust Gauge currently situated at Blackwood Pit, which were removed during the construction of Embankment 2. When the Blackwood Pit monitoring equipment is re-installed in early 2021 and Embankment 3 works completed, the PM10 monitor at Proprietary Square will be moved to the TSF2 ramp to monitor in-pit dust levels. Video cameras were installed on the Mill Control Room overlooking TSF2 before the embankment works started as a means of monitoring and recording dust generation. The other operational PM10 monitor was installed at the lookout above the western end of TSF2.

2.7.2 Exploration

During 2021, exploration on CML7 will continue to focus on:

- (a) Western Mineralisation:
 - Southern and down-plunge delineation.
 - Northern plunge reversal.
 - Far north

Rasp Mine 20 of 93

- (b) Number 2, 3 Lens Main Lode remnants as well as further extensional targets near the base of McCulloch's, McBryde's and Blackwood's areas.
 - Block 7 and below Main Lode.

2.7.3 Operations

Table 2-6 outlines the planned production rates for 2021. **Plan 3** (**Figure 2-3**) shows the mining areas and stopes. Planned mine production is 567,330 t, tailings deposition is estimated at 498,176 t. With the change in operational plan the TSF storage capacity has been extended to 2023.

Activity	January to December 2021 (t)
Ore Mined	451,504
Waste Backfill (UG Rock Places)	55,913
Waste Trucked to Surface	184,087
Milled	451,505
Lead concentrate	20,949
Zinc concentrate	46,333
Tailings deposited	384,223
TSF2 storage capacity as at end of period	1.8 years

Table 2-6 Summary of Planned Production for 2021

2.7.4 Water structures - maintenance

Surveying of the water storage structures were conducted in 2018. The development of staged storage curves enabling more accurate capacities and volumes to be determined will be completed in 2021.

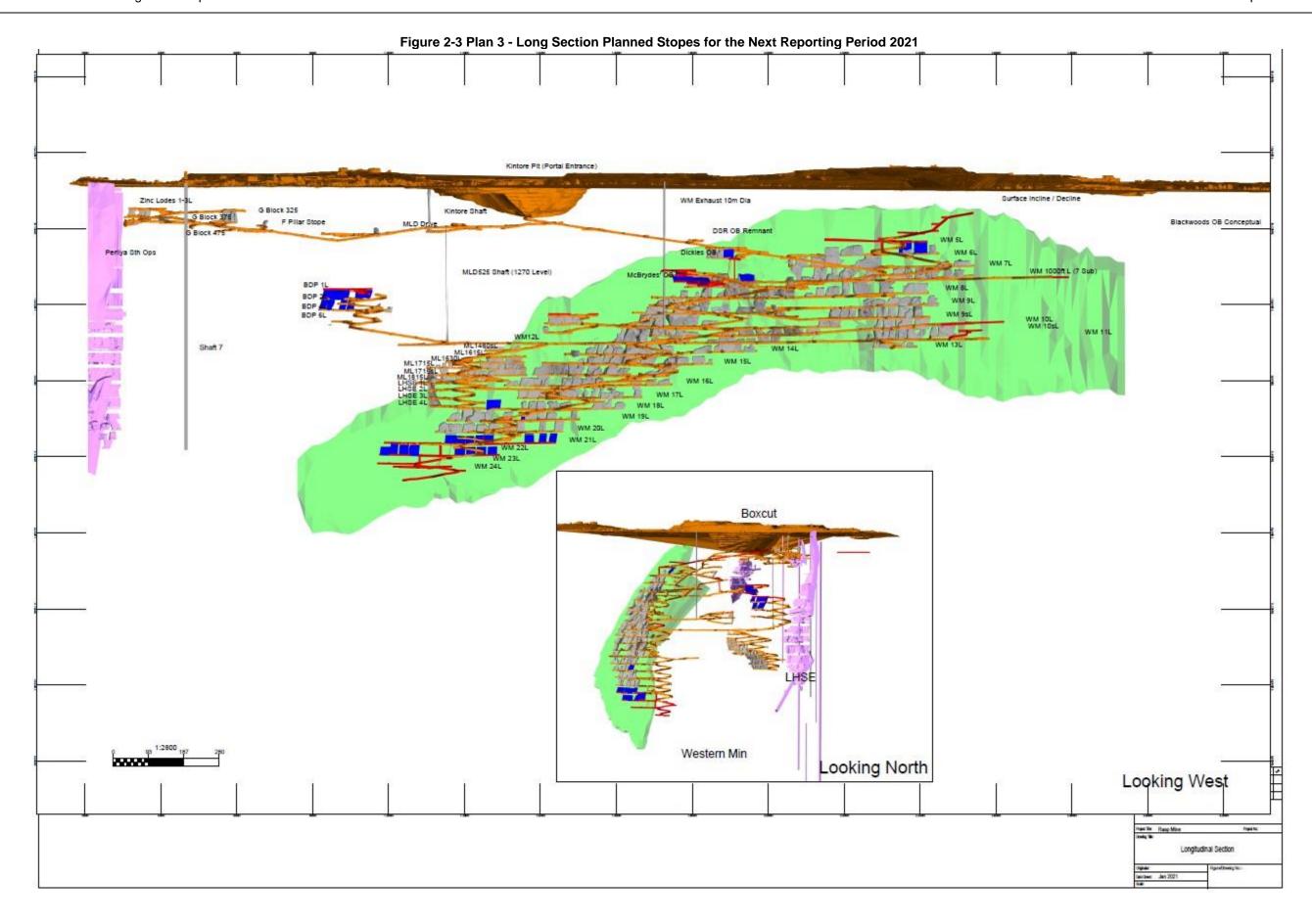
Inspections of storages for sediment build-up were conducted in 2018 and sediment removal was conducted in sediment pond 17A and Horwood's Dam in 2019. The material recovered from Horwoods Pond was disposed of in the north-eastern end of TSF2 in 2020.

2.7.5 Modification applications

In 2021, BHOP will apply for modification (MOD6) of the project approval to deposit tailings into Kintore Pit, relocate the mine portal, and provide for future waste rock storage.

In the original Environment Assessment (EA) for the Project it was planned for tailing to be placed both in an above ground tailing storage facility and underground, via the Backfill Plant, to fill mining voids. The tailing waste stream from ore processing has been approved to be deposited in the historic tailing facility (TSF1) and in the disused Blackwood Pit (TSF2). BHOP chose to deposit tailing in TSF2 and not use TSF1. This decision was based on the greater capacity of TSF2 (3.1 Mt) compared to the capacity of TSF1 (970,000 t).

In the initial EA BHOP underestimated the amount of mine development that was required to access the Main Lode and Western Mineralisation ore bodies. The need to undertake more underground mining development has impacted the amount of waste generated. In the original EA it was predicted that approximately 250,000 t of waste rock would be produced each year for a production rate of 750,000 t of ore. Actual total waste rock produced has averaged 416,397 t per year since commencement of operations peaking in 2019 with 490,000 t. BHOP has chosen to place the additional waste rock underground to fill voids and stopes, as it is more economic to dispose of waste rock underground where possible rather than transporting waste to the surface. Thus there has been no requirement to fill any underground void with tailings. **Table 2-4** summarises tailing and waste rock


Rasp Mine 21 of 93

placement as predicted in the original EA (at a production rate of 750,000 t) and what has actually been placed since commencement of operations.

Meetings have been held with the relevant regulators to discuss the proposed modification - Department of Planning and Environment (DPE), the Broken Hill City Council (BHCC), Division of Resources and Geoscience (DRG) and the Environment Protection Authority (EPA).

Rasp Mine 22 of 93

Annual Environmental Management Report 2020

Rasp Mine 23 of 93

3. ENVIRONMENTAL MANAGEMENT AND PERFORMANCE

3.1 Meteorological

Figure 3-1 and

Table 3-1 provide summary weather data. This data is a combination of information from the Rasp Mine weather station and the Bureau of Meteorology station (for rain days and rainfall).

While temperatures in 2020 remained consistent with historical records, rainfall (108.6 mm) for the period was significantly lower than the BoM's long-term annual average of 259 mm. Winds were predominantly from the south with high winds experienced during July to November.

Figure 3-1 Weather Data for the Reporting Period (2020)

Table 3-1 Summary of Wind and Rain Days in Reporting Period (2020)

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Predominant Wind Direction	S	S	S	S	S-SW	NW	SSW	NW	S-W	S-SW	S	S
Max wind speed (km/hr)	51.4	43.6	46.6	46.9	49.6	43.3	36.5	48.7	60.2	51.5	59.2	47.1
Days rained in month	0	3	4	5	0	1	2	5	4	6	1	2

3.2 Environmental Monitoring Locations

The BHOP site environmental monitoring program is summarised in **Table 3-2**, locations for sampling/monitoring points are shown in **Figure -3-2**. Shaft 6 was removed as an air quality monitoring location in MOD5, approved in November 2018, as Shaft 6 became an air intake point in April 2018. In April 2017, blast monitor V4 at 123 Eyre St was removed at the residents request and placed at the Eyre St Bowls Club. The site weather station was replaced in January 2019 as the previous weather station cannot calculate Sigma Theta, a requirement of EPL 12559.

Rasp Mine 24 of 93

Table 3-2 Summary of BHOP Environmental Compliance Monitoring Program

EPA ID	BHOP ID	Parameter	Frequency
AIR QUALITY			,
1 & 56	Primary Vent	- Oxides of Nitrogen (as NO ₂)	Quarterly (at
	Shaft and Shaft 6	-Total solid particles (TSP)	blasting event)
		- Volatile organic compounds	
		- Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V	
2	Crusher	- Total solid particles (TSP)	Quarterly
	Baghouse Stack	- Total - Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V	
3 - 9	D1 – D7	Insoluble solids, Lead	Monthly
10	TSP-HVAS	Total Suspended Particulate, Lead on filter paper	Every 6 days
11 & 12 ¹	HVAS1 & 2	PM10, Lead on filter paper	Every 6 days
13 & 14	TEOM 1 & 2	PM10, Wind Speed/Direction	Continuous
SURFACE WATER	₹		
29 - 36	S31-1, 44, 49, 1A,	pH, EC, TDS, SO4, Cl, Na, Cd, Pb, Mn, Zn	When contain
	9B-2, Horwood		water (at least 2
	Dam, Upstream		per 12 months)
	and Downstream		April & October
GROUNDWATER			· ·
37 - 52	GW01 – GW16	pH, EC, TDS, SO4, Cl, Ca, Mg, Na, Fe, Cd, Pb, Mn, Zn	Quarterly
53 & 54	Shaft 7 & Kintore	pH, EC, TDS, SO4, Cl, Ca, Mg, Na, Fe, Cd, Pb, Mn, Zn	Quarterly
	Pit extraction		,
NOISE & BLASTII	NG VIBRATION		,
15 - 28	A1 – A14	Leq, 15min/Day	Annually
		Leg, 15min/Evening	,
		Leq, 15min/Night	
V1 – V5	V1 – V5	dB	Continuous
		mm/ second	(when blasting)
-	V6	dB	Continuous
		mm/ second	(when blasting)
-			. 3,
WEATHER	•		'
55	Meteorological	Temperature, wind speed & direction, rainfall	Continuous (15
	Station	, , , , , , , , , , , , , , , , , , , ,	minute intervals)
		and to be campling from those units, however, those units of	

Note 1 = EPL 12559 lists TSP and TSP Lead to be sampling from these units, however, these units can only monitor one type of parameter. BHOP are in discussion with the EPA to resolve this.

The following sections provide a summary of these monitoring requirements together with the results for the reporting period. A discussion of any identified trends and a comparison with predictions in the original EA/PPR are also provided where available.

3.3 Air Quality

In accordance with the conditions of PA07_0018 and EPL12259 air quality is monitored:

- Air emissions from in-stack mine exhaust ventilation and the crusher baghouse are tested quarterly by an external contractor with specialised equipment;
- Ambient air quality is monitored by BHOP personnel via a combination of dust deposition gauges, high volumes air samplers (HVAS) and tapered element oscillating microbalance (TEOM) sampling units; and

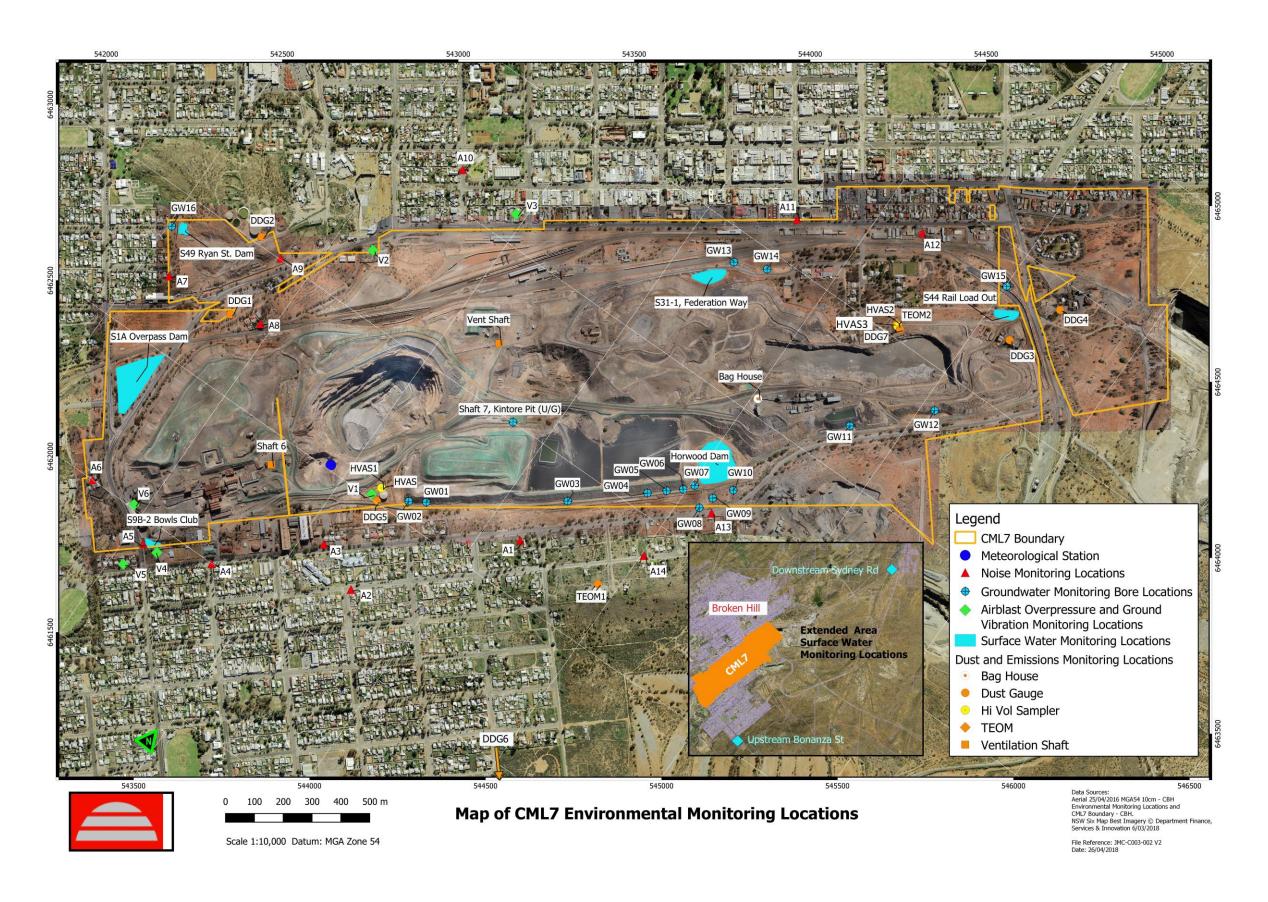

Real-time information is downloaded and alerts automatically forwarded to assist in the day-to-day operational management of issues as well as long-term analysis of environmental data.

Figure 3-2 shows the sampling locations for all air quality monitoring units.

Rasp Mine 25 of 93

Annual Environmental Management Report 2020 Broken Hill Operations Pty Ltd

Figure 3-2 Location of Compliance Monitoring / Sampling Points

Rasp Mine 26 of 93

3.3.1 In-stack air quality

During the reporting period BHOP engaged Assured Monitoring Group (AMG) to conduct testing of the mine ventilation exhaust points and the crusher baghouse. Testing was performed each quarter in accordance with the EPL. AMG are NATA accredited to perform this testing. The EPL Condition L2.1 specifies the in-stack performance criteria for the two ventilation exhaust units - Primary Ventilation Shaft and Shaft 6 and the Crusher Baghouse. **Table 3-3** provides the results of the testing against the limits as set out in the EPL. All limits were met. Shaft 6 became an air intake in April 2018 but monitoring of emissions continued to the end of 2018.

The EPA received a complaint in 2018 regarding the dust emanating from the Primary (Main) Vent. While sprays in the mouth of the Primary Vent are operated following a blast, dust is still emitted from the vent and can be carried off the site. BHOP engaged the services of a ventilation specialist to review the effectiveness of the spray system and recommend alternative control measures if needed. A ring main has since been installed around the Vent mouth and fine particle sprays as recommended by Wet Earth were installed.

On 9 December 2020 quarterly emissions testing conducted at the Crusher Baghouse returned results (received January 2021) exceeding the PA07_0018 Schedule 3 Condition 4 Table 5 limits for Total Suspended Particles (TSP) and Type 1 and 2 Substances. The TSP result from the test conducted on 9 December 2020 was 58.9 mg/m3 (limit 20 mg/m3), and the Type 1 and 2 Substance result from the 9 December 2020 test was 4.32 mg/m3 (limit 1 mg/m3). Details are provided in Section 8

After receiving the December 2020 monitoring report in January 2021, crushing activities were stopped and the baghouse was shut down. An inspection of the baghouse seals and filter bags was conducted on 11 January utilising a powdered dye to detect holed filter bags and/or dust leakage points. The use of the powdered dye is a common process also utilised by baghouse specialists to detect dust leakage issues. During the first inspection, a filter bag with a significant tear was detected due to the presence of visible powdered dye around the top of the damaged filter bag. This filter bag was replaced and another test was undertaken, again using the dye powder. On this occasion another two filter bags with smaller holes were detected. These filter bags were replaced and again the test was repeated. On the third test, minimal dye was detected on the 'clean side' of the baghouse, and only with the aid of a ultra-violet light source. One bag with a small hole (<10mm) was identified and replaced. Based on this result, it was determined the crusher and baghouse could be restarted and a follow-up monitoring event was organized with Assured Environmental which was conducted on 20 January 2021.

Environmental harm was not likely as the baghouse is situated in a sheltered area and the winds between 9 December 2020 and 11 January 2021 were predominantly from the South, so much of the dust emitted would be contained locally or could be expected to be deposited in the Blackwoods Tailings Facility. A review of PM10 air monitoring data for air monitors placed north of the baghouse exhaust did not show any noticeable increase in dust levels recorded.

Rasp Mine 27 of 93

Limit **Primary Vent Crusher Baghouse** (EPL1) (EPL2) Testing Date (2020) 12/3 16/6 17/11 812 12/3 16/6 17/11 8/12 Nitrogen Oxides N/A1 350 5.14 5.05 7.05 7.07 N/A¹ N/A¹ N/A¹ (mg/m³)**Volatile Organic** 40 0.487 0.463 0.465 0.477 N/A¹ N/A¹ N/A¹ N/A¹ Compounds (mg/m³) Total Suspended 20 1.95 9.62 3.0 4.31 3.76 19.0 19.2 58.9 Particles (mg/m³) Type 1 and Type 22 0.042 0.076 0.139 0.037 0.102 0.466 0.734 4.32 (mg/m³)

Table 3-3 Vent and Baghouse Testing Results During the Reporting Period

Note 1 = Not required to be tested.

Note 2 = Type 1 substance Means the elements antimony, arsenic, cadmium, lead or mercury or any compound containing one or more of those elements. Type 2 substance means the elements beryllium, chromium, cobalt, manganese, nickel, selenium, tin or vanadium or any compound containing one or more of those elements.

3.3.2 Dust deposition gauges

Dust deposition levels refer to the quantity of dust particles that settle out from the air as measured in grams per square metre per month (g/m²/month) at a particular location. Total fallout dust (depositional dust) is continuously monitored from seven deposition gauges located on and around the Rasp Mine, as shown in **Figure 3-2**. D1 and D6 are located off-site, D1 near the St Johns training facility north of the Rasp Mine and D6 in Casuarina Avenue south of the Rasp Mine. D2 to D5 and D7 are located on the Mine lease in various locations. D7 was removed in June 2019 due to the construction of Embankment 2 at TSF2. It will be reinstalled at TSF2 early in 2021.

Samples are collected monthly and are sent to ALS Laboratory (NATA accredited) in Newcastle and analysed for total deposited dust and deposited lead dust. Deposited dust is assessed as insoluble solids as defined by Standards Australia, 2003, AS 3580.10.1-2003: Methods for Sampling and Analysis of Ambient Air - Determination of Particulates - Deposited Matter - Gravimetric Method.

Dust deposition criteria are provided in terms of both an acceptable increase in dust deposition over the existing background levels and an absolute maximum value. These impact assessment criteria are summarised in **Table 3-4**.

 Pollutant
 Averaging Period
 Maximum increase in deposited dust level
 Maximum total deposited dust level

 Deposited dust
 Annual
 2 g/m²/month
 4 g/m²/month

Table 3-4 Dust Deposition Criteria

Provided below is a discussion of results for dust deposition during the reporting period (2019) and trends over the operational life of the Rasp Mine. Dust deposition results are reported and reviewed internally on a monthly basis.

Figure 3-3 and Figure 3-4 show the monthly dust deposition and total deposited lead results for the reporting period.

There were fifteen occasions where the monitoring location exceeded the depositional dust level of 4 g/m²/month limit (red figures in **Table 3-5**) compared to fourteen the previous year. Dust deposition results are higher in the summer months at the beginning and end of the year due to the windy weather, high evaporation, and dust storms. Rainfall in each of the three previous years has been below the BOM's long-term average of 259 mm, with 92.2 mm falling in 2018, 34.76 mm in 2019, and 108.6 mm in 2020.

Rasp Mine 28 of 93

Lead results were consistently above baseline levels throughout the period except for June and August at D3-Thompsons Shaft, which is adjacent to the rail loading facility and access road, as well as exposed areas situated on the northern side of the site. D3 may be impacted by haul road traffic at the rail-loadout but the water cart is employed whenever train loading is taking place and street sweeping occurs weekly.

D4-Junction Mine also recorded elevated lead levels throughout the summer months but this is surrounded by the Junction Mine reserve and other exposed historical mining areas to the northeast and northwest.

The D2-Block 10 gauge is situated on Essential Water property and experienced high Dust and Lead results from January to March when there were frequent dust storms and pipeline works were taking place.

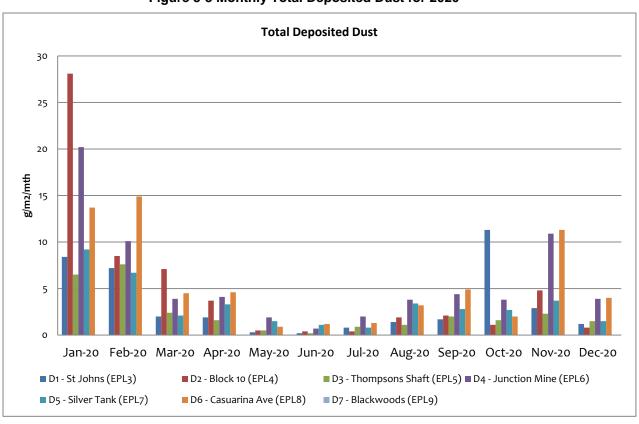

Rasp Mine 29 of 93

Table 3-5 Dust Deposition Results for the Reporting Period (g/m²/month)

	E	D1 EPL3 if site)		D2 EPL4		D3 EPL5	D EP			D5 EPL7	E	D6 :PL8 f site)	-	D7 PL9
2020	DD	LD	DD	LD	DD	LD	DD	LD	DD	LD	DD	LD	DD	LD
Jan	8.4	0.004	28.1	0.0162	6.5	0.0085	20.20	0.017	9.2	0.00674	13.7	0.00139	NS	NS
Feb	7.2	0.00279	8.5	0.0107	7.6	0.00808	10.10	0.002	6.7	0.004	14.9	0.00147	NS	NS
Mar	2	0.00262	7.1	0.01	2.4	0.00786	3.90	0.003	2.1	0.00228	4.5	0.00093	NS	NS
Apr	1.9	0.00286	3.7	0.00436	1.6	0.01	4.10	0.006	3.3	0.00589	4.6	0.00181	NS	NS
May	0.3	0.001	0.5	0.00061	0.5	0.00694	1.90	0.010	1.5	0.0084	0.9	0.00087	NS	NS
Jun	0.2	0.00029	0.4	0.0002	0.2	0.00207	0.70	0.003	1.1	0.00552	1.2	0.00063	NS	NS
Jul	8.0	0.00392	0.4	0.00123	0.9	0.0083	2.00	0.013	0.8	0.00464	1.3	0.0012	NS	NS
Aug	1.4	0.00097	1.9	0.00086	1.1	0.0046	3.80	0.004	3.4	0.0113	3.2	0.00131	NS	NS
Sep	1.7	0.00107	2.1	0.00117	2	0.0117	4.40	0.007	2.8	0.00422	4.9	0.00259	NS	NS
Oct	11.3	0.00047	1.1	0.0013	1.6	0.0089	3.80	0.001	2.7	0.00681	2	0.00071	NS	NS
Nov	2.9	0.00147	4.8	0.00259	2.3	0.0086	10.90	0.024	3.7	0.0116	11.3	0.0044	NS	NS
Dec	1.2	0.0005	0.8	0.0009	1.5	0.0056	3.90	0.006	1.5	0.00177	4	0.00056	NS	NS
2010	4.0	0.0034	3.1	0.005	4.3	0.005	5.7	0.006	N/A ¹	N/A ¹	5.8	0.004	N/A ¹	N/A ¹

Note 1 = Background is not available for these locations.

Figure 3-3 Monthly Total Deposited Dust for 2020

Rasp Mine 30 of 93

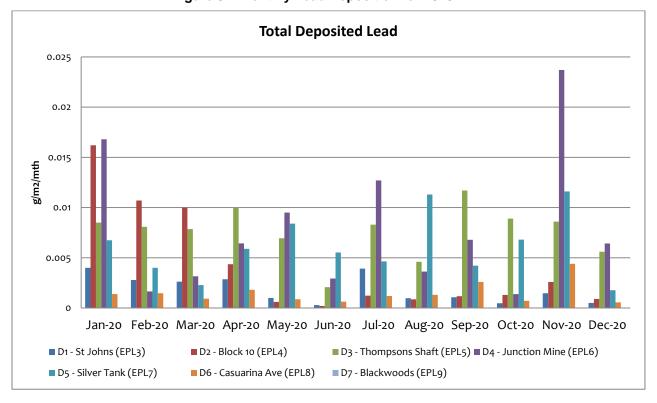
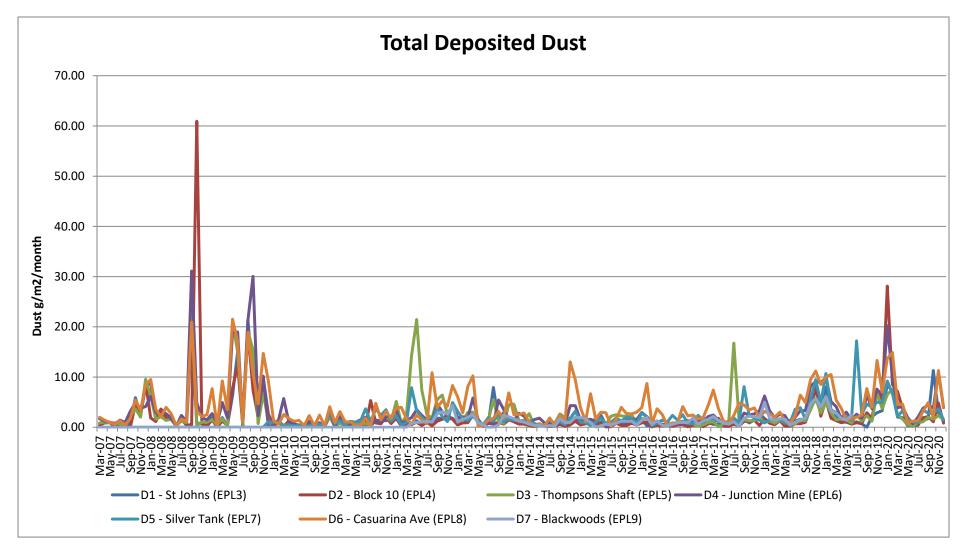
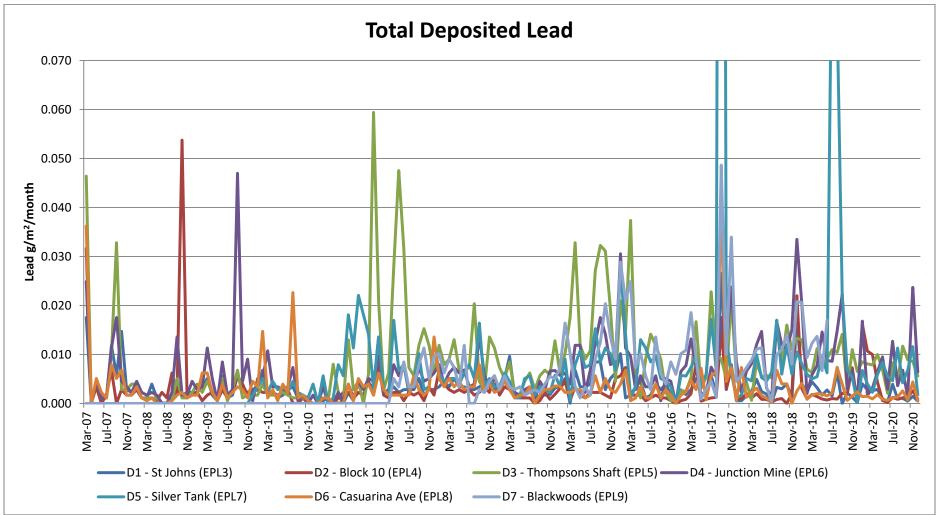



Figure 3-4 Monthly Lead Deposition for 2020


Rasp Mine 31 of 93

Rasp Mine 32 of 93

Rasp Mine 33 of 93

3.3.3 High volume air samplers

There are four high volume air samplers used to measure ambient air quality at the Rasp Mine – HVAS (EPL10) and HVAS1 (EPL11) are located at the Silver Tank, central and to the south of the mine lease, and HVAS2 (EPL12) and HVAS3 (EPL57) are located adjacent to and north of Blackwood Pit. Locations are shown in **Figure 3-2**. HVAS and HVAS3 sample for total suspended particulates (TSP) and lead dust, and HVAS1 and HVAS2 sample for particulate matter less than 10 microns (PM $_{10}$) and lead dust.

Samples are collected every six days and are sent to ALS Laboratory (NATA accredited) in Newcastle. **Table 3-6** outlines the impact assessment criteria as listed in PA07 0018.

In accordance with the PA07_0018 and the EPA air quality guidelines, from September 2017, the criteria for annual rolling average for PM $_{10}$ criterion was reduced from 30 $\mu g/m^3$ to 25 $\mu g/m^3$. All other air quality criterion remains unchanged.

Pollutant	Averaging Period	Criterion
Total suspended particulate (TSP) matter	Annual	90 μg/m ³
Particulate matter < 10 µm (PM ₁₀)	Annual	25 μg/m ³
Particulate matter < 10 µm (PM ₁₀)	24 hour	50 μg/m ³

Table 3-6 Impact Assessment Criteria

Note: Criteria changed from 30 μg/m³ to 25 μg/m³ in September 2017

Provided below is a discussion of results for each HVAS unit during the reporting period (2020) and trends over the operational life of the Rasp Mine. HVAS unit results are reported and reviewed internally on a monthly basis.

There was one non-compliance when the High-Volume Air Samplers at Silver Tank failed to sample as scheduled on 2 January 2020 due to firmware fault. The non-compliance is discussed in further detail in Section 8.

HVAS (EPL10)

TSP and TSP-lead results for 2020 recorded by HVAS are shown in **Figure 3-7** and **Figure 3-8**. These show the results have remained consistent over the reporting period.

The rolling annual average TSP at the HVAS unit recorded $69.95 \,\mu\text{g/m}^3$ for the reporting period was a significant decrease over the previous period rolling annual average of $80.17 \,\mu\text{g/m}^3$. A reduction in extreme weather events and rainfall at the end of 2020 is likely responsible for the reduction.

As shown in the figures below, with the onset of warmer weather and high winds there is an increase in the TSP and TSP-Lead recorded. The rolling annual average TSP-lead at the HVAS unit has decreased to 0.25 $\mu g/m^3$ from 0.29 $\mu g/m^3$ at the end of the 2019 reporting period. The Rasp Mine PA07_0018 does not stipulate any criteria for lead; however the recorded annual average of TSP-lead remains below the NSW EPA guideline of 0.50 $\mu g/m^3$.

The highest TSP levels recorded were on 1 February (258 μ g/m³), 14 March (288 μ g/m³), 7 May (490 μ g/m³) and 4 October (253 μ g/m³). Winds were predominantly from the WNW (34.9 km/hr), SSE (46.6 km/hr), South (49.6 km/hr), and from the NNE (51.5 km/hr), respectively. High dust levels were also recorded in the PM10 High Volume Air Sampler and TEOM unit on these days indicating it was likely due to regional dust storms.

The highest TSP-Lead levels were on 7 May $(0.69~\mu g/m^3)$ and 15 November $(1.1~\mu g/m^3)$. Winds were predominantly from the South (49.6 km/hr) and NNE (59.2 km/hr), respectively. The results of 15 November may have been a result of site activities although no specific activities could be identified as the cause.

Rasp Mine 34 of 93

Results for TSP are well below the EPA threshold of 90 $\mu g/m^3$ and 0.5 $\mu g/m^3$ for TSP-lead.

Figure 3-7 HVAS TSP Results for the Reporting Period (2020)

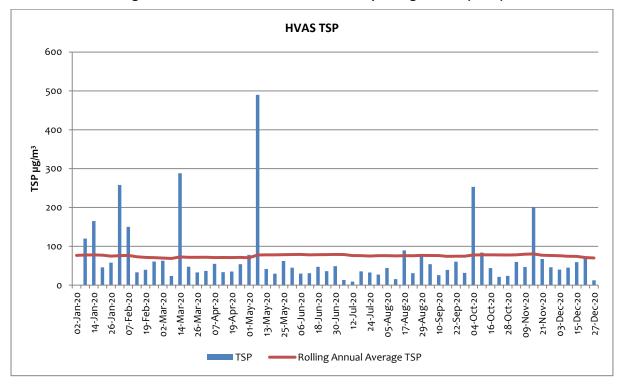
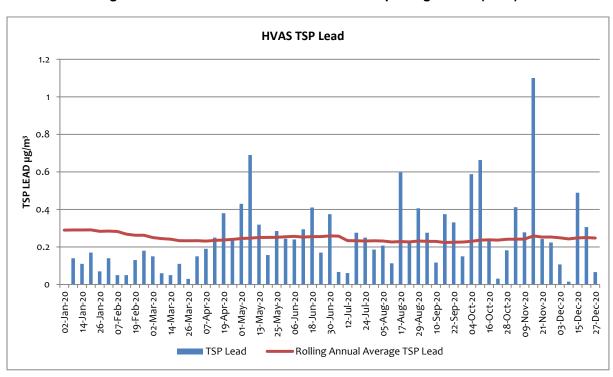
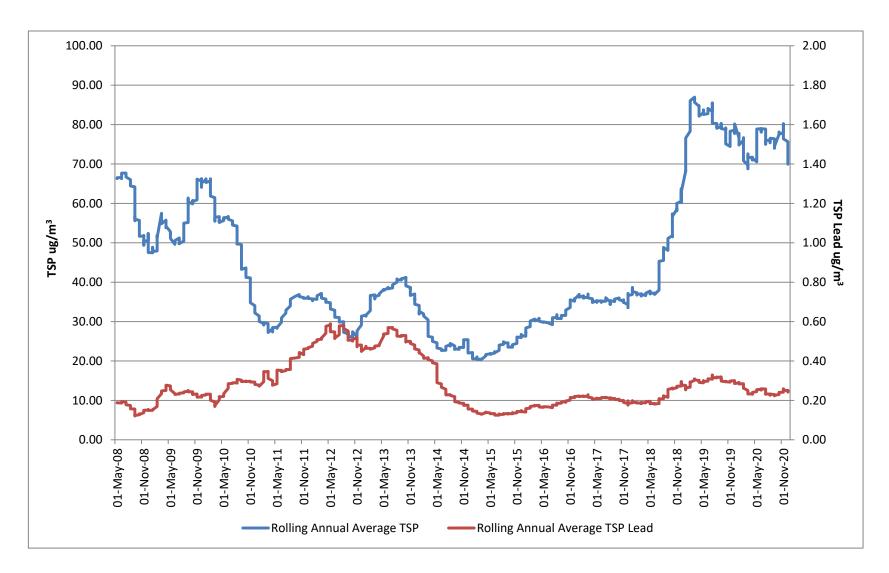



Figure 3-8 HVAS TSP-Lead Results for the Reporting Period (2020)


The original EA did not include a receptor close to HVAS in predictions for total suspended particles.

Rasp Mine 35 of 93

As can be seen in **Figure 3-9** there is an increase in dust levels recorded in HVAS since 2016 while Lead levels have remained stable, which suggests that much of the dust contributed is not from site and likely the result of drought conditions.

Rasp Mine 36 of 93

Rasp Mine 37 of 93

HVAS1 (EPL11)

HVAS1 is used for sampling PM_{10} and PM_{10} -lead. The average annual PM_{10} level recorded at this monitoring point at the end of the reporting period was 50.7 $\mu g/m^3$, which has increased from the previous reporting period of 48.1 $\mu g/m^3$ and is above the background level reported in the EA of 29.1 $\mu g/m^3$. Results for the reporting period are shown in **Figure 3-10** which indicates that the rolling annual average for PM_{10} is above the criteria of 25 $\mu g/m^3$. As expected there were elevated PM10 levels recorded in the summer and spring months.

The highest PM₁₀ levels recorded were on 1 February (221 μ g/m³), 14 March (238 μ g/m³), 7 May (430 μ g/m³) and 4 October (359 μ g/m³). Winds were predominantly from the WNW (34.9 km/hr), SSE (46.6 km/hr), South (49.6 km/hr), and from the NNE (51.5 km/hr), respectively.

Trends are discussed below and results for the period 2011 to 2020 are shown in Figure 3-15.

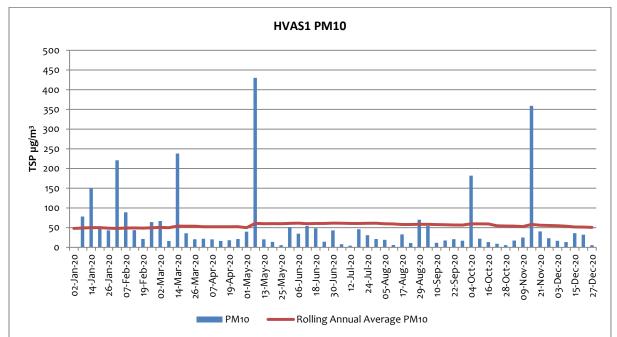


Figure 3-10 HVAS1 PM₁₀ Results for the Reporting Period (2020)

The annual average PM_{10} -lead concentration has increased slightly from 0.08 $\mu g/m^3$ in the previous reporting period to 0.16 $\mu g/m^3$, **Figure 3-11.** The highest HVAS1 PM_{10} -Lead levels were on 7 May $(0.6\mu g/m^3)$ and 15 November (1.41 $\mu g/m^3$). Winds were predominantly from the South (49.6 km/hr) and NNE (59.2 km/hr), respectively. The results of 15 November may have been a result of site activities although no specific activities could be identified as the cause.

Since May 2011 when HVAS1 started operating dust levels have fallen and then risen in the last two years due to the drought and frequent dust storms.

There is no criterion for PM_{10} -lead. Trends are discussed below and results for the period 2011 to 2020 are shown in **Figure 3-12**.

Rasp Mine 38 of 93

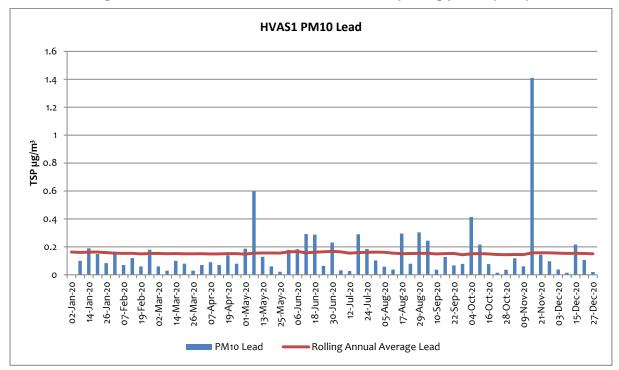
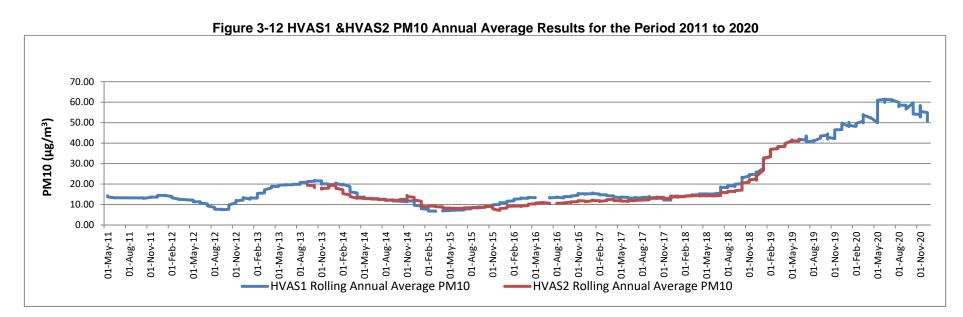
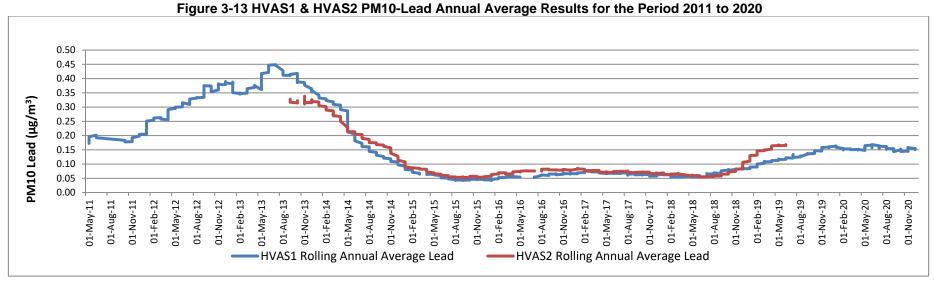


Figure 3-11 HVAS1 PM₁₀-Lead Results for the Reporting period (2020)

HVAS2 (EPL12)

HVAS2 was removed from Blackwoods Pit in June 2019 due to Embankment 2 construction works. HVAS2 will be reinstalled at TSF2 early in 2021. To 12 June 2019 the average annual PM_{10} level recorded at this monitoring point was 41.74 $\mu g/m^3$, which was an increase over the previous reporting period (23.78 $\mu g/m^3$), above the background level reported in the EA of 29.1 $\mu g/m^3$ and above the criteria of $25\mu g/m^3$ (for off-site receptors).


Trends are discussed below and results for the period 2011 to 2019 are shown in **Figure 3-11 and Figure 3-12**. Since May 2011 when HVAS1 started operating dust levels have fallen and then risen in 2019 due to the drought and frequent dust storms.


HVAS3 (EPL57)

HVAS3 (EPL57) was included in EPL 12559 on 14 March 2019 to provide for monitoring of TSP Dust on the northern boundary of the site at Blackwoods Pit TSF2. HVAS3 has been decommissioned while Embankment 2 TSF2 construction works are undertaken. HVAS3 will be reinstalled at TSF2 early in 2021. A real-time PM_{10} monitor is in place adjacent to the HVAS3 location.

To 12 June 2019 the rolling average annual TSP level recorded at this monitoring point was 56.05 $\mu g/m^3$.

Rasp Mine 39 of 93

Rasp Mine 40 of 93

3.3.4 TEOM monitors

The Rasp Mine has two Tapered Element Oscillating Microbalance (TEOM) air quality monitors, which record real time PM10 data. **Figure 3-2** shows the location of these monitors.

Table 3-7 PM10 Assessment Criteria

Pollutant	Averaging Period	Criterion
Particulate matter < 10 µm (PM ₁₀)	24 hour	50 μg/m ³
Particulate matter < 10 µm (PM ₁₀)	Annual	25 μg/m ³

Note: Criteria changed from 30 μg/m³ to 25 μg/m³ in September 2017

The monitors operate continuously over a 24-hour period and provide a real time data read out on a kiosk computer in the HSE office. The monitors also provide auto-generated notifications when triggers are exceeded (when the level exceeds 100 ug/m3 expressed as a 1 hour rolling average) the cause is investigated and controlled by the use of the water truck or by modifying work methods.

TEOM2 was decommissioned on 15 June and removed due to Embankment 2 construction works on the northern side of Blackwoods Pit. TEOM2 will be reinstalled at TSF2 early in 2021. During the reporting period TEOM1 was serviced by a technician in April and TEOM1.

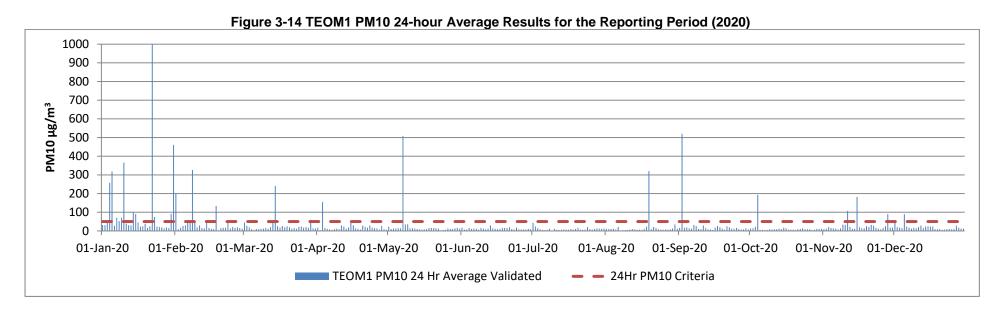
The un-validated results for TEOM1 PM_{10} 24-hour average for the reporting period are provided in **Figure 3-14** TEOM1 PM10 24-hour Average Results for the Reporting Period (2020)**14**. A number of dust storm events were recorded on TEOM 1 during the period. As can be seen in the graphs in **Figure 3-15** high-dust events are captured in those months experiencing high evaporation rates, high temperatures, and extreme wind and dust events. Storm events are excluded from the application for criteria.

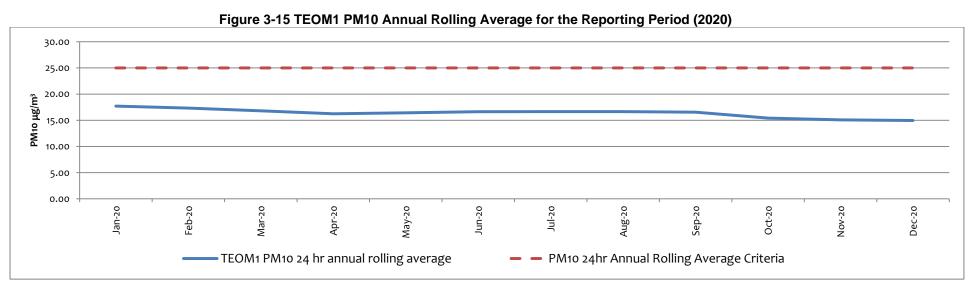
The PM10 annual average at the TEOM1 monitor at the end of the reporting period was 14.95 $\mu g/m^3$ (17.62 $\mu g/m^3$ in the previous year) and is below the listed criteria of 25 $\mu g/m^3$. The annual average PM10 at TEOM2 in June 2019 was 20.52 $\mu g/m^3$ which is below the criterion 25 $\mu g/m^3$ required at the nearest residential location. The results for TEOM1 are provided in

15.

Annual average PM10 results for TEOM1 and TEOM2 increased after early 2019, which is expected considering the severity of the drought over the past three years, but declined in 2020 due to the increase in rainfall in the months towards the end of the year, Error! Reference source not found.16.

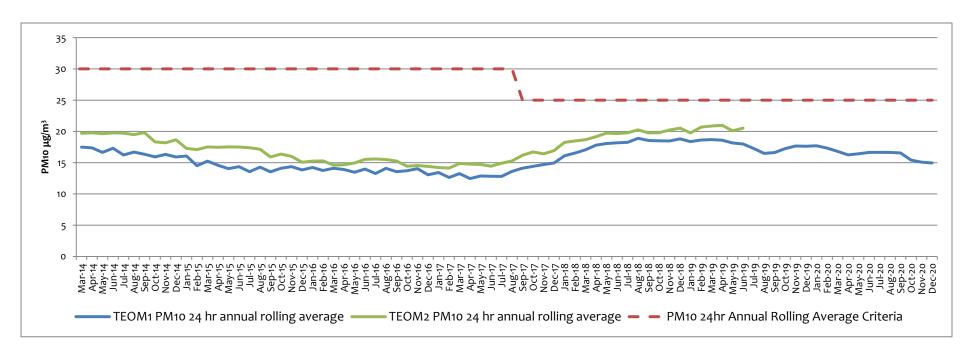
Air Quality Management Plan BHO-PLN-ENV-001 lists the controls that were in place during the reporting period. In summary, the major controls include:


- The use of chemical dust suppressant on non-active mining areas and roads;
- Sealing of all major roads and the use of a street sweeper and water truck;
- Wing walls and roof over the ROM Bin and water sprays on the apron feeder to the crusher;
- Fully enclosed conveyors and transfer points prior to the Sag Mill with installed dust collectors:
- · Restricted access to non-active mining areas;
- Use of water sprays on the ROM Pad;
- Concentrate loading into containers occurs in an enclosed building and containers are covered prior to exiting the building; and


Rasp Mine 41 of 93

- All vehicles leaving site are washed, including trucks taking containers to the rail loadout area.
- Traffic light system informing all staff and contractors of wind speeds.
- Wind speed alerts from the onsite weather station notifying of wind speeds greater than 35 km/hr

Monitoring results indicate that controls have been adequate to manage dust levels during the reporting period.


Rasp Mine 42 of 93

Rasp Mine 43 of 93

Rasp Mine 44 of 93

3.4 Erosion and Sediment

The majority of the existing batters were constructed during former mining operations and consequently the surfaces of the batters consist predominantly of weathered rock. It is not practical to reshape the slopes, as most of the slopes are steep, on the mine lease boundary and predominantly comprise of large rock aggregate. The process of erosion over the years since the slopes were formed has removed most of the finer materials and the existing surface now comprises relatively large and coarse rock resulting in a self- armoured surface with limited erosion potential.

Inspections consist of a visual assessment for erosion, flooding, rubbish, algal growth or significant sediment build up. No major works were required as a result of these inspections.

3.5 Surface Water

There are no natural watercourses or creeks flowing through the site. The drainage network layout restricts runoff leaving active mine areas of the site for a 1 in 100-year 72-hour ARI rainfall event.

Surface water monitoring includes a weekly visual inspection of water storage facilities, freeboard and structural integrity. The tailings storage facility and the processing events dam are inspected and levels checked monthly. Quarterly water quality samples are taken from dams when the water levels are above 20% capacity. Samples are couriered to ALS, a NATA accredited laboratory for analysis.

There are seven sampling locations for surface water, these include surface water basins located on the mine lease to capture and retain rainfall and two locations up and down stream of an ephemeral creek located south of the mine lease boundary. Sampling requirements are provided in **Table 3-8** and locations of sampling points are shown in **Figure 3-2**.

Description	Frequency	Parameters to be Analysed
Federation Way Culvert EPL29/S31-1	2 x per year , six months apart	
Ryan Street Dam EPL31/S49	2 x per year , six months apart	cadmium (Cd), chloride (Cl), electrical
Adjacent Olive Grove EPL32/S1A	2 x per year , six months apart	conductivity (EC), lead Pb), manganese (Mn), pH, sodium (Na), sulphate (SO4),
Adjacent Bowls Club EPL33 /S9-B2	2 x per year , six months apart	total dissolved solids (TDS) and zinc (Zn)
Horwood Dam EPL34/Horwood Dam	2 x per year , six months apart	
Upstream Bonanza St EPL35	2 x per year , six months apart	
Downstream Sydney Rd EPL36	2 x per year , six months apart	

Table 3-8 Surface Water Monitoring Requirements

Ponds are sampled at least twice a year when the pond contains water for at least one week and the volume of stored water is at least 20% of the pond capacity. Sampling is expected to be undertaken in April and October, as these are the highest rainfall months as recorded by Bureau of Meteorology. Sufficient rain fell in March that sampling could be conducted from a few of the monitoring locations. Results of the surface water analysis for the reporting period are provided in **Table 3-9**.

No storage water overflowed from these ponds during the reporting period.

Lead and Zinc levels were slightly elevated in S1-A which is the pond between the South Road overpass and Gypsum Street as this was a former mine water storage dam. Zinc was elevated in S31-1 as it is situated on Federation Way and receives water from the roadway and waste dumps along the northern side of the site. S49 returned elevated Lead and Zinc levels due to it capturing water from Block 10 which, as the former site a mill, is contaminated. Horwood Dam recorded a number of elevated results which is to be expected as it captures water from a number of areas on site before the contained water is pumped to the Mill process pond.

Rasp Mine 45 of 93

Table 3-9 Stormwater Pond Water Quality Results for the Reporting Period (2020)

Sample Point	Sample Date	pH EC	TDS	Alkalinity (CaCO ₃)	SO4	CI	Са	Mg	Na	Cd	Pb	Mn	Zn	Fe	
			(μS/cm2)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
S31-1	21-Sep-20	5.93	2460	3110	<1	1600	44	172	25	58	4.83	1.64	146	533	<0.05
S49	21-Sep-20	6.31	537	444	6	244	6	59	6	9	0.241	0.092	11	33.2	<0.05
S1A	21-Sep-20	6.83	386	374	17	150	20	43	6	18	0.0796	0.581	3.5	11.3	<0.05
S9B-2	21-Sep-20							D	ry						
Horwood Dam	21-Sep-20	6.38	6260	6510	6	3010	1190	375	212	1020	3.49	2.07	130	166	<0.05
Upstream	21-Sep-20	6.68	646	500	45	211	42	72	11	45	0.0103	0.014	0.322	1.6	<0.05
Downstream	21-Sep-20	7.43	303	262	64	30	38	17	4	43	0.0001	<0.001	<0.001	0.008	<0.05

Rasp Mine 46 of 93

S49 Pump

S49 captures runoff from the Block 10 catchment contaminated by historic mining activities. In 2011 with the end of a long-term drought in Broken Hill, water escaped from this facility. A liner has since been installed on the upstream side of the levy bank and has not yet seen water levels high enough to test its effectiveness. In response to a seepage issue in 2016 a solar pump was installed within the Dam to remove water immediately from the dam to ensure a) water does not seep through the walls (which are lined), and b) to ensure capacity for catchment runoff is maintained. The solar pump was connected to a pipeline to sediment pond S31-1. The solar pump has since been removed as it is an electrical hazard and the BHOP Environment Department have purchased a dedicated mobile pump for use at S49.

It is difficult to undertake sampling of surface waters due to the low rainfall and high evaporation rates in Broken Hill. In particular, 2020 was a dry year (108.6 mm) with less than half the normal average rainfall (259 mm).

The quantity of water in the ponds at the time of sampling is unknown; this would have a major impact on the water quality results. All waters were contained within the containment structures with no off site discharges during the reporting period.

3.5.1 Water containment structures

All surface runoff on site is captured by diversion trenches or berms and channelled to site water storage structures. No changes were made to this system during the reporting period. **Plan 5** shows the water catchments and containment structures. **Table 3-10** provides the capacities and estimated stored water volumes at the end of the reporting period. Detailed surveying of the water storage structures is planned for the next reporting period. Surveys will be used to develop staged storage curves that will enable more accurate capacities and volumes to be determined.

Sediment was removed from the S17 pond and Horwoods Dam in 2019. Sediment from S17 was disposed of in TSF2 and the sediment from Horwoods Dam was stockpiled on site and disposed of in TSF2 in 2020.

Markers are placed in water ponds to indicate the maximum level to which water may be stored in the facilities to maintain sufficient free board to accommodate a 1:100 year 72 hour storm event.

Rasp Mine 47 of 93

Pond Start of reporting At end of reporting Storage Capacity Identification period m³ m^3 period m³ (1-Jan-2020) (31-Dec-2020) Workshop 9 9 14 22.5 22.5 22.5 Boom Gate Mill 22.5 1400 1400 Potable and Raw Water Delprat's Shaft 22.5 22.5 22.5 Kintore Pit 14 14 18 Silver Tank 6500 6500 6500 S2 0 0 5003 S14 0 0 7813 **Dirty Water** S17 0 0 4265 0 0 (rain runoff) S31-2 225 S49 0 0 1951 S35 0 0 6092 Horwood Dam 1000 100 7663 Plant Water Pond 1000 1000 2000 Process. S22 Mine Settlement 3000 3000 20,489 underground and Ponds used water S22-A 2000 2000 2000 Vehicle Wash 22.5 22.5 22.5

Table 3-10 Water Containment Structures

3.6 Groundwater

The regional groundwater near the site is depressed due to long term pumping from the underground mines in the area. This results in the depressed groundwater level below the site being more than 100m below the surface level, with a hydraulic gradient into the site at depth. The groundwater monitoring program is undertaken with the purpose of recording perched groundwater movement. Perched groundwater refers to surface water that has infiltrated into the near surface moderate to high permeability material generally comprising of granular soils and rock dill. The perched groundwater exists for short periods of time after rainfall events and generally seeps laterally over the low permeability bedrock surface below the near surface permeable material. The rainfall events at Rasp mine site indicate that the perched groundwater has the potential to surface seep rather than seep into the regional groundwater. Considering the depth of the regional groundwater, it is concluded that there is little interaction between the shallow perched groundwater and the regional groundwater.

Rasp's groundwater monitoring plan is outlined in the Site Water Management Plan.

The monitoring program includes eighteen sampling locations for groundwater, GW01 (EPL37) to GW16 (EPL52) are installed piezometers at various locations around the mine site and are sampled quarterly. There are also two sampling locations for water pumped from underground mining, Shaft 7 (EPL53) and Kintore Pit (EPL54), sampled monthly. The locations for these monitoring points are shown in **Figure 3-2**. Groundwater monitoring is scheduled for completion in March, June, September and December. A number of parameters are required to be analysed including: alkalinity (calcium carbonate (CaCO₃)), cadmium (Cd), calcium (Ca), chloride (Cl), electrical conductivity (EC), iron (Fe), lead Pb), magnesium (Mg), manganese (Mn), pH, sodium (Na), sulphate (SO4), total dissolved solids (TDS) and zinc (Zn). **Table 3-11** lists the location and function of each borehole.

Rasp Mine 48 of 93

Table 3-11 Location and Function for Groundwater Monitoring Points

Bore ID	Location	Function
GW01, GW02	Southeast of Mt Hebbard	Monitor potential seepage from Mt Hebbard
GW03 – GW09	East of TSF1	Monitor potential seepage from TSF1 towards CML7 boundary
GW10	Downstream of Horwood Dam	Monitor potential seepage north of Eyre St Dam
GW11, GW12	East of Blackwood Pit	Monitor perched groundwater mounding from TSF
GW13-GW15	Adjacent to storage areas S44, S31-1 and S31-2	Monitor movement of perched groundwater occurring from the storages
GW16	West of S49	Monitor potential seepage from S49
Shaft 7	Shaft 7	To maintain safety for underground mining at both the Rasp and Perilya South Mines
Kintore Pit - Mine dewatering	Kintore Pit decline	To maintain safety for underground mining at the Rasp Mine

Groundwater quality monitoring was undertaken in May 2007 and August 2011 at Shaft 7 to establish an initial baseline for parameters and trigger levels for the monitoring program (30% above 2011 results).

The site's groundwater is deep and is extracted as part of mining. The underground extraction system results in inward flow of the groundwater into the mine. Hence, groundwater at the mine is likely to be impacted by off-site sources due to the inward hydraulic gradient into the mine.

As shown in **Table 3-12** the majority of piezometers showed stable or decreasing water levels during the reporting period. For bores GW05 to GW10 this indicates there is lees water seeping from TSF and Horwoods Dam, and the decrease in GW11 levels suggests less water is seeping from TSF2 as it fills the Blackwoods Pit and seals any fractures or shafts in the walls. **Table 3-13** provides a summary of groundwater monitoring results for 2020.

Table 3-14 provides a summary of water monitoring results for Shaft 7 and mine dewatering (Kintore Pit), indicating highest in maroon, lowest in blue and samples above baseline trigger in orange.

Rasp Mine 49 of 93

Sample				Depth	mbTOC			
Sample	Ave 2020	Ave 2019	Ave 2018	Ave 2017	Ave 2016	Ave 2015	Ave 2014	Trend
GW01	Dry	8.42	8.35	6.85	7.39	7.25	7.25	Falling to dry
GW02	Dry	Dry	Dry	3.33	Dry	Dry	Dry	Dry
GW03	3.66	3.83	3.6	3.58	3.64	3.62	3.61	Stable
GW04	3.42	2.99	2.73	2.87	2.94	2.9	2.83	Stable
GW05	4.16	3.76	3.65	3.49	3.53	3.5	3.4	Falling
GW06	3.21	3.16	3.10	2.96	2.85	2.76	2.66	Falling
GW07	3.80	3.14	3.15	2.58	2.74	2.8	2.54	Falling
GW08	3.08	2.53	2.36	1.88	1.81	1.87	2.11	Falling
GW09	4.31	3.89	3.84	3.50	2.94	3.07	1.79	Falling
GW10	5.2	4.20	3.46	1.90	1.49	1.725	0.83	Falling
GW11	13.30	12.17	12.00	10.00	10.10	10.4	10.69	Falling
GW12	21.52	21.53	20.47	19.19	34.49	37.1	21.6	Stable
GW13	Dry	Stable						
GW14	Dry	Dry	Dry	1.3	Dry	Dry	Dry	Stable
GW15	Dry	Dry	Dry	2.8	Dry	Dry	Dry	Stable
GW16	Dry	Dry	Dry	Dry	1.55	Dry	Dry	Stable

Table 3-12 Bore Piezometer Depths

Quarterly samples were obtained from 10 of the 16 bores, samples were obtained from ten bores, and no samples could be obtained from bores GW1, GW2, GW13, GW14, GW15, or GW16. This was due to dry conditions as a result of the low rainfall in Broken Hill for 2020. Elevated Iron levels for most bores in March is likely the result of contamination during sampling.

Results remained within historic ranges and were consistent with the expectation of Golder as outlined in the Site Water Management Plan, that perched groundwater quality would contain significant concentrations of lead, manganese and zinc due to the seepage contact with the near surface materials on site and the surrounding areas.

The following provides a discussion of results.

GW01 and GW2 Located Downstream of Mt Hebbard

These water bores are intended to monitor the sub-surface water fluctuations south of Mt Hebbard. GW1 had sufficient water to monitor each quarter while GW2 was dry through the year. GW1 was dry for each sampling event in 2020, probably due to the ongoing drought; water levels for GW2 were not recorded for previous years except for 2017 but this was at bore depth. Error! Reference source not ound.22 indicates that results remain within historic ranges.

GW03, GW04, GW05, GW06, GW07, GW08, GW09 and GW10 Located Adjacent to TSF1 and Horwood Dam

Groundwater bores are located near the eastern side of the unused historic TSF1 and extend to Horwood Dam. The intent of the monitoring bores is to monitor perched water in the area that may impact on Eyre Street Dam. The monitoring is in response to surface seepage noted in the area during intense 2011 rainfall events. All bores in the series were able to be monitored each quarter.

Rasp Mine 50 of 93

Water levels are falling in GW3, GW4, GW5 with GW6, GW7, GW8, and GW9, and GW10. Error! eference source not found. **17** indicates that results remain within historic ranges.

GW11 and GW12 located south east of Blackwood Pit

Blackwood Pit is used for the storage of tailings. It forms part of the mining area and is surrounded by historic mine workings. Due to these historic workings, any seepage from the Pit will be intercepted and collected by the underground mine water management system. Due to the north east and south west length of the pit there is a possibility for the formation of a perched aquifer as a result of groundwater mounding around the south east site of the pit once it receives tailings. If a perched water table is measured in the two bores, consideration will be given to the installation of additional bores to assess the local hydrogeological conditions and risk of migration of seepage. On the advice of Golder, bores were installed to the south east of the facility in order to detect any seepage.

The ground water level in GW11 was slightly lower than previous periods and the level of GW12 decreased but is higher than in 2015 and 2016. GW11 recorded elevated Cadmium, Manganese, Magnesium, Calcium, Total Alkalinity, Sodium, Chloride, Sulphate, TDS and EC in September and December of 2019 and in March and June of 2020. The same pattern occurred in June and September 2018 and is likely due to the tailings level in TSF2 reaching a point where a fault or crack has allowed water to escape. Concentrations are being monitored and levels are expected to return to normal as the fault or crack is sealed by tailings. Error! Reference source not found. 17 indicates esults remain within historic ranges.

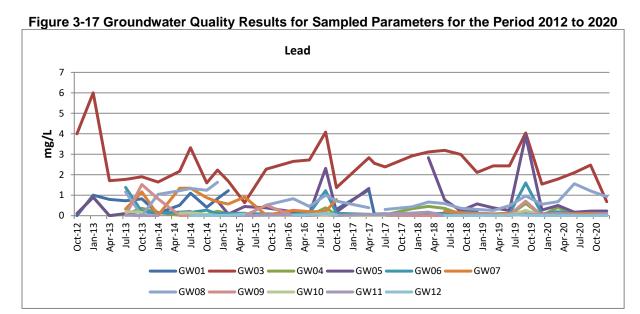
GW13) (adjacent 31-1), GW14 (adjacent 31-1) and GW15 (adjacent rail load out) and GW16 (adjacent S49)

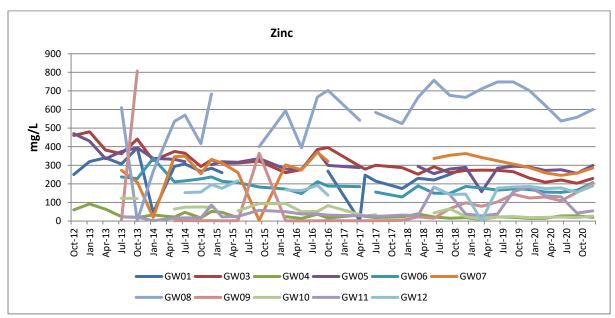
As perched water seepage may occur from ponds located near the CML7 boundary when these ponds store water, bores have been installed adjacent these locations. All bores were dry in the period.

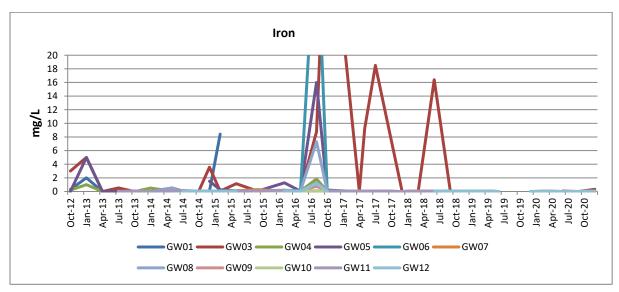
Rasp Mine 51 of 93

Table 3-13 Piezometer Monitoring Results for the Reporting Period (2020)

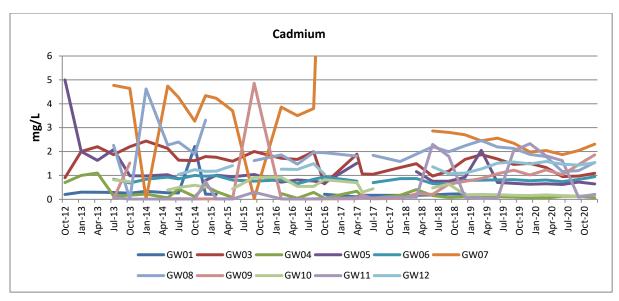
Site	Month Sampled	рН	EC	TDS	Alk	SO4	CI	Ca	Mg	Na	Cd	Pb	Mn	Zn	Fe
GW01	Mar, Jun, Sep, Dec							С	Dry						
GW02	Mar, Jun, Sep, Dec						lr	nsufficient de	epth for samp	ole					
	Mar	6.55	14400	11800	3	4520	3110	572	373	2290	1.33	1.79	280	209	5.4
04400	Jun	6.63	13300	11800	3	4680	2930	567	358	2200	0.951	2.1	262	221	0.07
GW03	Sep	5.39	3 13700 12	12600	<1	4300	2910	489	337	2120	0.972	2.47	247	203	<0.05
	Dec	5.48		12800	<1	4660	2690	571	347	2250	1.09	0.679	269	229	0.32
	Mar	7.34	14200	12100	233	4650	2870	572	551	2370	0.0554	0.401	26.4	14.6	2.91
	Jun	6	12800	11200	161	4780	2620	556	482	2210	0.126	0.007	74.3	27.4	<0.05
GW04	Sep	6.49	13900	11700	200	4270	2650	491	457	2100	0.125	0.001	62.1	28.1	<0.05
	Dec	6.53	13700	12000	239	4670	2390	583	530	2360	0.066	0.002	39.6	19.4	0.05
	Mar	6.67	15100	14300	105	6050	2870	507	657	2620	0.651	0.498	335	272	4.01
	Jun	5.49	14800	14700	104	6340	2670	500	630	2540	0.62	0.17	328	276	<0.05
GW05	Sep	5.69	16000	15300	93	5920	2690	450	594	2430	0.72	0.222	319	257	<0.05
	Dec	5.69	15600	15400	99	6920	2590	517	626	2520	0.642	0.225	358	299	0.05
	Mar 7.03 13800	11000	53	4780	2720	542	471	2190	0.809	0.192	264	156	0.05		
GW06	Jun	5.4	13000	11900	62	5100	2600	535	457	2120	0.736	0.083	249	154	<0.05
	Sep 5.82 13800		12600	61	4600	2640	464	433	2010	0.832	0.11	256	165	<0.05	

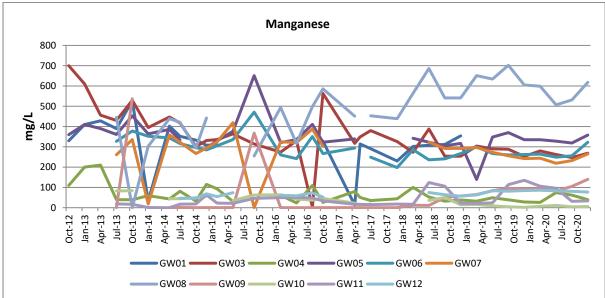

Rasp Mine 52 of 93

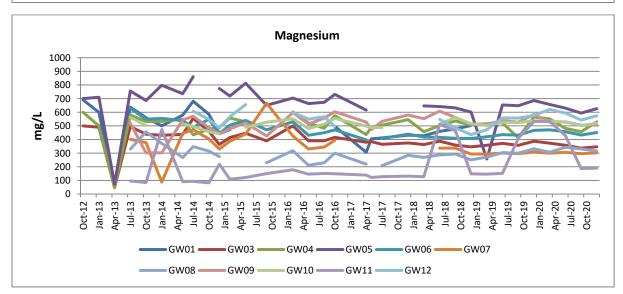

Site	Month Sampled	рН	EC	TDS	Alk	SO4	CI	Ca	Mg	Na	Cd	Pb	Mn	Zn	Fe
	Dec	6.73	13400	12800	51	4800	2390	538	451	2120	0.944	0.109	323	206	0.05
	Mar	7.79	11600	9020	28	4360	1920	530	300	1740	2.04	0.099	244	259	<0.05
	Jun	6.01	11300	10300	41	4490	1970	542	306	1760	1.87	0.094	219	246	<0.05
GW07	Sep	6.92	12100	11100	39	4090	1850	469	296	1700	2.04	0.111	232	258	<0.05
	Dec	5.96	12000	11500	34	4250	2160	548	302	1800	2.31	0.101	265	285	0.05
	Mar	7.71	13200	13600	16	4900	2670	540	307	1650	1.79	0.686	599	623	0.07
	Jun	6.07	13200	13200	40	5340	2700	534	343	2000	1.16	1.56	507	538	<0.05
GW08	Sep	5.59	14000	13900	34	4780	2730	472	331	1940	1.2	1.21	531	558	<0.05
	Dec	5.62	12900	13900	23	4980	2360	546	316	1810	1.54	0.93	618	600	0.05
	Mar	6.53	11100	9920	67	4180	1870	597	528	1400	1.23	0.004	93.2	129	0.07
	Jun	5.3	10600	9780	93	4590	1850	603	530	1390	1.03	0.002	82	109	<0.05
GW9	Sep	6.12	11600	10500	72	4110	1780	545	505	1400	1.45	0.007	105	154	<0.05
	Dec	6.06	11400	10600	60	4430	2080	625	506	1480	1.86	0.006	140	202	0.05
	Mar	6.68	13800	11500	273	4290	2800	583	534	2240	0.184	6.8	0.008	20	<0.05
	Jun	5.45	13100	10800	283	4450	2630	580	528	2160	0.153	<0.001	11.6	21.4	<0.05
GW10	Sep	6.46	13900	11700	315	4040	2780	508	502	2060	0.135	<0.001	3.99	18.4	<0.05
	Dec	6.5	13400	11500	258	4370	2430	608	520	2140	0.181	0.006	5.67	26.6	0.05
GW11	Mar	6.67	10200	9010	67	4060	1460	449	532	1750	1.82	0.103	106	136	0.12

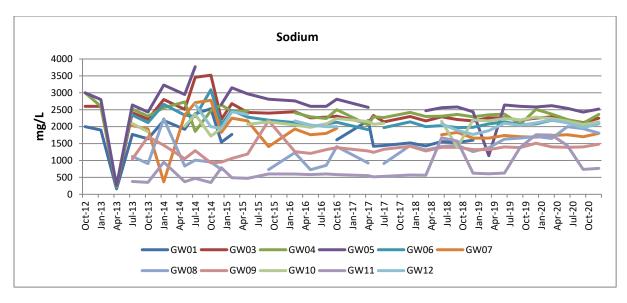

Rasp Mine 53 of 93

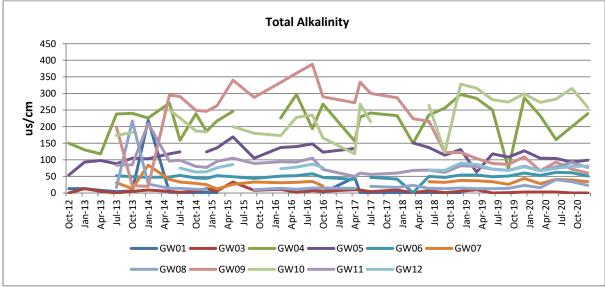
Site	Month Sampled	рН	EC	TDS	Alk	SO4	CI	Ca	Mg	Na	Cd	Pb	Mn	Zn	Fe
	Jun	6.61	9600	8760	79	4310	1430	405	429	1440	1.62	0.038	96.2	130	<0.05
	Sep	6.56	5860	4930	92	2400	643	328	187	736	0.0829	0.037	31.4	43.1	<0.05
	Dec	6.68	5650	4800	77	2540	622	332	190	766	0.209	0.101	33.7	54.8	0.05
	Mar	7.01	13400	12600	67	5060	1960	487	621	2200	1.58	0.004	86.4	175	<0.05
	Jun	6	12700	11800	74	5520	2000	475	594	2110	1.47	0.005	83.2	178	<0.05
GW12	Sep	5.68	13100	12200	80	4790	1760	416	543	1970	1.43	0.003	80.5	155	<0.05
	Dec	5.76	12900	12200	81	5720	1860	490	574	2080	1.53	0.009	77.3	189	0.05
GW13	Mar, Jun Sep, Dec							С	ry						
GW14	Mar, Jun, Sep, Dec							С	ry						
GW15	Mar, Jun, Sep, Dec							Dry							
GW16	Mar, Jun, Sep, Dec							С)ry						

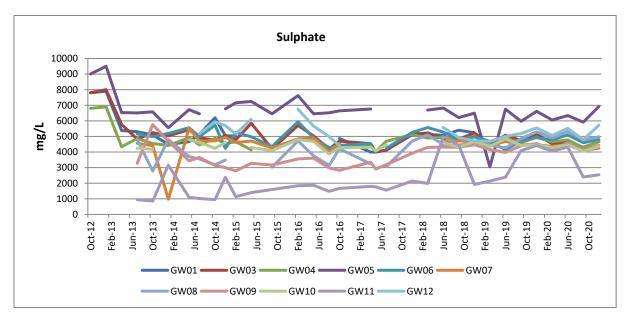

Rasp Mine 54 of 93

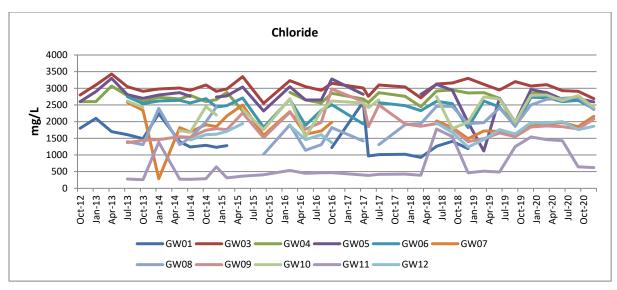


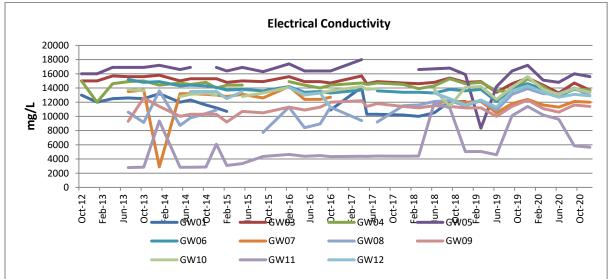


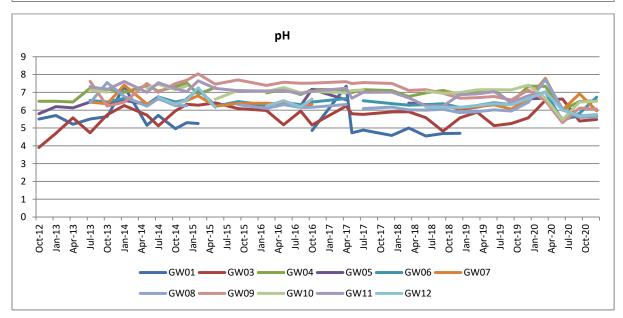

Rasp Mine 55 of 93

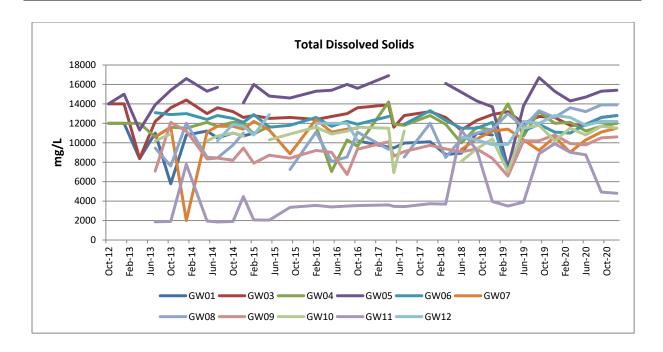





Rasp Mine 56 of 93





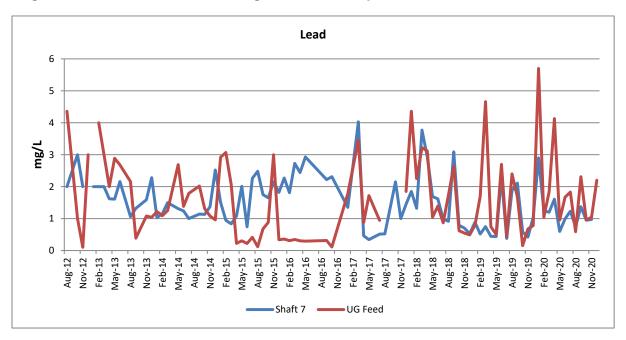

Rasp Mine 57 of 93

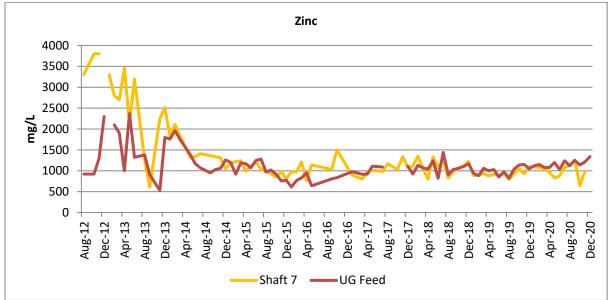
Rasp Mine 58 of 93

Rasp Mine 59 of 93

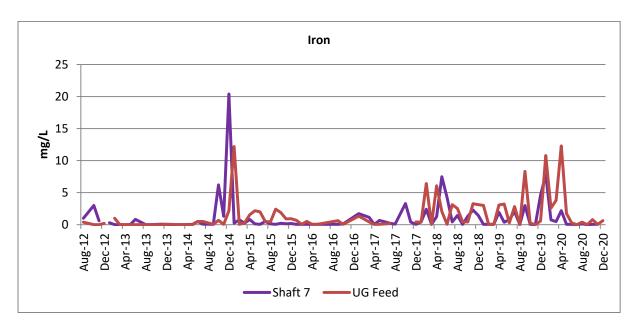
Table 3-14 Groundwater Monitoring Results for Shaft 7 and Mine Dewatering for the Reporting Period (2020)

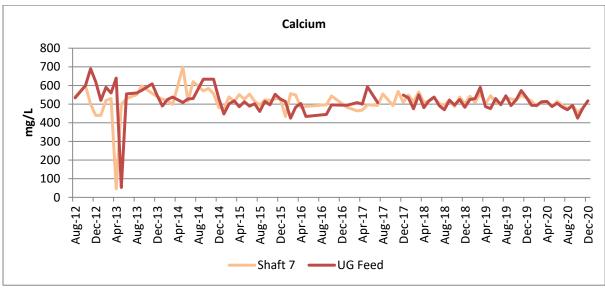
Site	Date	рН	EC	TDS	Alkalinity (CaCO ₃)	SO4	CI	Са	Mg	Na	Cd	Pb	Mn	Zn	Fe	
			(μS/cm2)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	
	6/01/2020	6.79	13200	12100	3	4590	1750	516	267	1670	2.82	2.9	334	1110	7.78	
	6/02/2020	5.67	13100	14500	20	6040	1750	490	253	1620	2.43	1.24	334	1070	0.74	
	2/03/2020	6.46	12400	13000	7	5440	1700	512	266	1650	2.96	1.2	331	1050	0.47	
	2/03/2020	6.68	11900	14600	9	5180	1730	514	270	1630	2.61	1.61	326	963	2.19	
	8/05/2020	6.69	11900	11700	24	4940	1710	487	278	1660	2.25	0.598	269	828	0.05	
Shaft 7	15/06/2020	6.63	11600	12500	11	5540	1710	515	278	1700	2.58	0.990	263	875	0.05	
Silait /	2/07/2020	5.73	12100	13800	5	5610	1740	494	267	1670	3.35	1.23	336	1080	0.05	
	7/08/2020	5.43	9600	13200	8	5400	1600	478	246	1510	4.22	0.744	322	1130	0.12	
	2/09/2020	6.63	9700	13400	3	4540	1690	493	268	1670	4.63	1.37	349	1260	0.05	
	6/10/2020	5.91	11500	11600	28	4580	1500	457	273	1540	1.96	0.947	220	646	0.05	
	11/11/2020	6.28	13100	13800	10	5760	1720	478	279	1500	3.71	0.972	306	983	0.05	
	11/12/2020		Shaft 7 pump not running													
	6/01/2020	6.71	12600	13000	6	4510	1650	494	238	1570	2.57	5.7	300	1120	10.8	
	6/02/2020	5.76	12700	18500	7	5890	1690	493	246	1580	2.62	1.04	366	1150	2.59	
	2/03/2020	6.63	12200	13300	7	5240	1610	513	260	1640	3.04	1.84	338	1080	3.8	
	2/03/2020	6.68	11800	13600	4	5260	1650	514	246	1570	2.88	4.13	325	1080	12.3	
	8/05/2020	6.5	12700	13000	6	5390	1680	487	272	1720	3.32	0.954	326	1200	1.74	
UG	15/06/2020	6.6	12000	13400	8	5690	1710	505	271	1700	3.30	1.67	288	1030	0.26	
Water	2/07/2020	5.09	12500	14600	1	5650	1750	484	272	1660	3.85	1.83	363	1240	0.05	
	7/08/2020	5.69	9510	13200	5	5220	1570	470	247	1530	4.2	0.589	322	1120	0.39	
	2/09/2020	6.46	9560	13700	4	4480	1680	493	275	1690	4.65	2.31	346	1250	0.05	
	6/10/2020	5.21	12500	14100	2	5260	1550	425	252	1580	4.25	0.961	300	1140	0.79	
	11/11/2020	6.18	13300	14600	7	5950	1720	478	279	1580	4.63	1.04	351	1210	0.05	
	11/12/2020	6.09	13000	15000	2	6900	1700	518	293	1780	4.28	2.2	432	1340	0.62	
Baseline		5.8	13900	8000	40	9660	1360	472	395	3550	6.32	2.25	907	3330	1.57	
Trigger		7.54	18070	10400	52	12558	1768	614	514	4615	7.58	2.93	1179	4329	2.04	

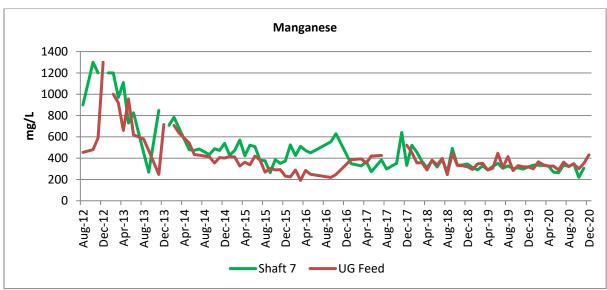

Trigger = Baseline + 30%

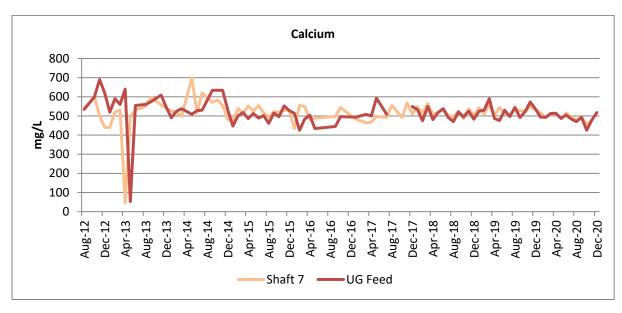

Rasp Mine 60 of 93

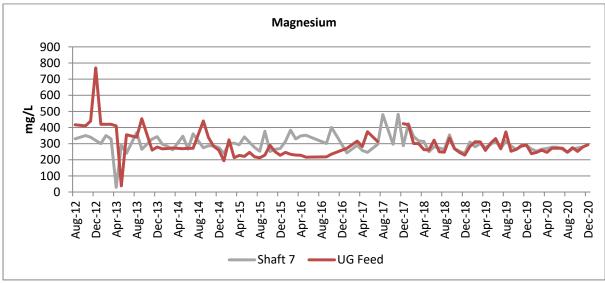
Results for both Shaft 7 and UG Feed occasionally exceeded trigger thresholds for Iron and Lead, but are variable. This likely impacted by the area of the mine being developed and mined. Total dissolved solids (TDS) results were above the trigger threshold for all of the year as with previous year.

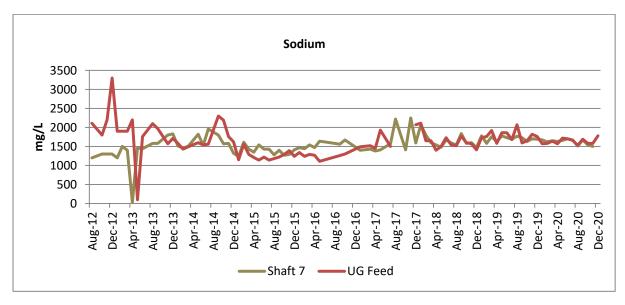

Figure 3-18 provides a series of graphs indicating results for the period 2012, commencement of operations, to 2020. Results are within the historic range for all parameters except for Lead and Iron.

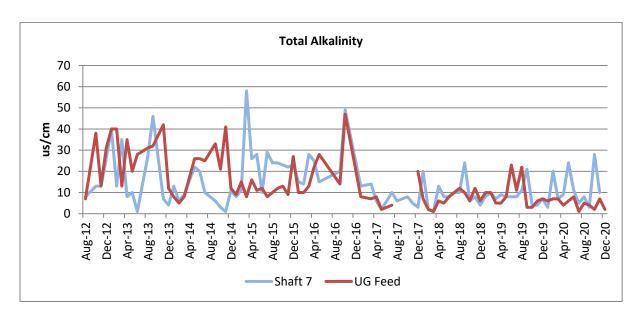

Figure 3-18 Shaft 7 & Mine Dewatering Results for Sampled Parameters - Period 2012 to 2020

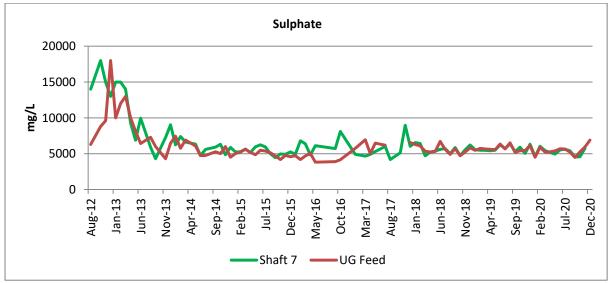


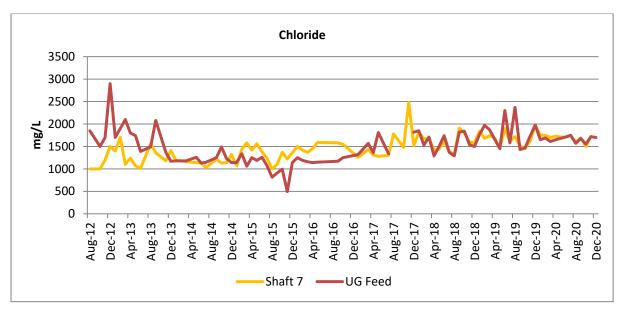

Rasp Mine 61 of 93

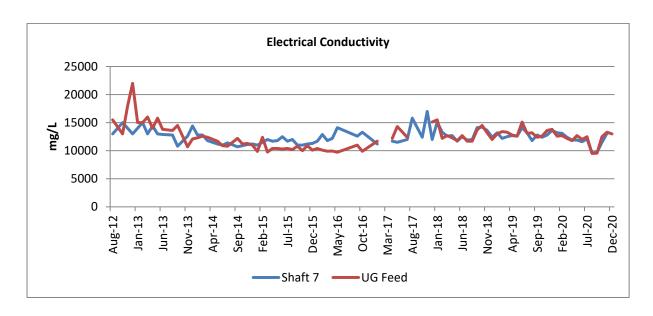


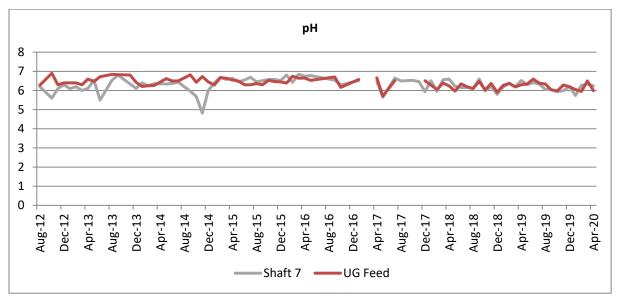


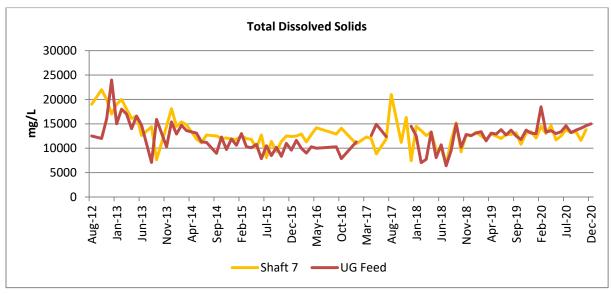

Rasp Mine 62 of 93






Rasp Mine 63 of 93





Rasp Mine 64 of 93

Rasp Mine 65 of 93

3.7 Contaminated Land

The majority of the surface land area that makes up the Rasp Mine is contaminated historic mining waste material including waste rock emplacements and tailings.

The storage and handling of diesel fuels, lubricants and oils, and waste rock material are the only aspects of the operation, which have the potential to contribute to contaminated land. The sections below outline how dangerous goods are handled onsite and procedures in place for managing and reporting spills.

3.8 Hydrocarbon and Chemical Management

The main streams of hydrocarbons managed on site include:

- Fuel (diesel) storage and distribution;
- Grease oils and lubricants storage distribution and recovery for recycling; and
- · Solvents used in the parts washer.

3.8.1 Fuel

Diesel is stored in two tanks each with a capacity of 68,000L. These self-bunded trans-tanks are located adjacent to the workshop and are sitting on a constructed concrete re-fuelling station. The facility has been designed and manufactured in accordance with AS1940 and AS1692. BHOP has provision for diesel storage on its Dangerous Goods Licence; UN 00C1 Diesel 150,000 L. Surface distribution of diesel is by direct collection from the fuel browser. The tanks operate on a float and cut-off system that prevents overfilling of the tanks.

A 10,000L diesel tank was commissioned in October 2017. The tank is situated at the 13L Service Bay underground. It is double skinned and self-bunded.

Rasp's fuel management system enables monitoring of fuel usage by each vehicle and piece of plant. This assists with maintenance and security as well as providing an accurate reporting mechanism for the collecting of data for NPI and NGERS reporting.

3.8.2 Grease, oils and lubricants

Lubricants and oils are stored in individual pods located on a portable bund. A storage facility for these lubricants and oils has been constructed on the western side of the main workshop. It consists of a raised concrete pad incorporating drainage to a sump to facilitate cleaning.

3.8.3 Solvents

Oil solvent used for cleaning of mechanical parts at the workshop is removed by a contractor on a fixed maintenance schedule.

3.8.4 Processing reagent storage

All reagents are stored in a purpose built storage facility designed to prevent contamination and capture spillage.

The reagents stored here include:

- Hydrated Lime
- Copper Sulphate
- Sodium metabisulphite
- Sodium ethyl xanthate
- Flocculent
- InterFroth F228
- Cytec S9232 (zinc collector)
- Anti-scalant

Rasp Mine 66 of 93

- Defoamer
- Zinc Sulphate

All quantities and map with storage locations are reference in the Pollution Incident Response Management Plan which is tested annually and available on the CBH website.

3.9 <u>Hazardous Material Management</u>

3.9.1 Licensing

Rasp holds Licence XSTR100095 for the storage and handling of dangerous goods and Radiation Management Licence 5063802. Additionally, Rasp holds an explosives licence (licence number XMNF200003) to manufacture, possess, store explosives and ammonium nitrate emulsion on site.

3.9.2 Dangerous goods management

Site dangerous goods management is managed according to the site Chemical Management Procedure BHO-PRO-SAF-020.

A Safety Data Sheet (SDS) database for each chemical is maintained. SDS's are kept at each location where chemicals are stored and in the mines rescue room. SDS's are also electronically available on the intranet.

General and contractor inductions outline the required actions in the event of a spill, including completing an Incident Report.

All quantities and a map with storage locations are referenced in the Pollution Incident Response Management Plan, which is tested annually and updated as required.

Storage, management and access to explosives onsite is outlined in the Store, Manage and Access Explosives Standard BHO-STD-MIN-001. A security plan compiled and submitted by the supervising licensee detailing the security measures for explosives on the Broken Hill Operations Pty Ltd, Rasp Mine site. (Document PLN- 03-06-01)

Explosives are stored both on the surface and underground. The surface explosive magazines (SEM) are located within the BHP Pit approx. 3 km north from the main office on Eyre Street. The area encompasses one detonator magazine (IE), one packaged explosives magazine (HE) and one emulsion bulk storage compound. The magazines are separated by a minimum of 7 metres and are bunded in accordance with AS 2187.1. All gates and magazines are secured with locks, and signage that meet the minimum required standards.

The underground explosive magazines (UEM) are located within the underground operations of Broken Hill Operations Pty Ltd, Rasp Mine. Separate storages are utilised for the storage of (IE) and (HE) Explosives Magazines are secured with locks, and signage that meet the minimum required standards.

SEM & UEM keys are locked in a secured key cabinet in the Broken Hill Operations Pty Ltd, Rasp Mine Site Office and are to be issued only by the Emergency Service Officers, who must check the identity and authority of the person wishing to take possession of the keys. The SEM & UEM Explosive Magazine Access Log Book BHO-TRN-REG-004 must be completed prior to issuing and returning the keys. Personnel will only be granted access if they possess a Security Clearance and their name appears on the Key Register (Section 7 of the Site Security Plan).

3.10 Waste Management

Waste management at the mine is classified into two broad categories: mineral wastes (mining and mineral processing wastes discussed above), and non-mineral wastes which include recyclables and non-recyclables.

Rasp Mine 67 of 93

3.10.1 Mineral wastes

Mineral wastes consist of waste rock from underground workings and tailings residue from the processing of ore.

Waste rock that cannot be returned underground to fill voids is stored in Kintore Pit or used for underground roads. In the reporting period 318,816 t of waste rock was placed underground and 19,404 t was placed on the stockpile in BHP Pit.

Tailings is discharged into Blackwood Pit (TSF2) with water recycled for use in processing where possible. In the reporting period 578,472 t of tailings was placed in Blackwood Pit.

3.10.2 Non-mineral waste

Rasp Mine has four main laydown areas where used parts and equipment are stored for future use. The recyclable area has dedicated sections for scrap metal, timber, batteries, rubber, electronic goods and used pods. Used 1000L pods are returned to the manufacturer for reconditioning and reuse or removed by a waste contractor for recycling or disposal.

Waste oil, oily water, coolant, hydrocarbon-contaminated solids (rags, spill control material, etc.), grease, oil filters, hydraulic hoses, and batteries are collected by a waste contractor for disposal or recycling.

Paper and cardboard are disposed on in blue recycling bins and skips which are collected by City Council. Printer cartridges are collected in "Planet Ark" disposal bags and delivered to the local Post Office for recycling. Scrap Metal is sold to a local scrap metal merchant and Cans and Bottles are sold to a local bottle collection merchant.

Waste disposed of in 2020 is summarised in **Table 3-15**.

No tyres were disposed in underground workings during the reporting period. Tyres for heavy mobile equipment have been stored or reused around the mine site for barricades on roadways and within the laydown yards. Occasionally heavy tyres will be transported off-site for disposal with ten haul truck tyres removed from site in 2019 by a local contractor. All other LV and light truck tyres are removed from site under arrangement with the tyre supplier.

Waste **Quantity Disposed** Oil 20,000 L Oily water 0 L Coolant 2,000 L Scrap metal 157.25 t 23,370 L Grease 20 m³ Oil filters, hoses, 80 m³ Contaminated drums/IBC's Printer cartridges 8 bags E-waste Nil Waste to Landfill 195.66 t

Table 3-15 Waste Summary - 2020

3.11 Flora and Fauna

The site is a highly disturbed environment that provides little value as native flora and fauna habitat. There have been no threatened flora, fauna or species habitat identified at the Rasp Mine. Goats frequent the site and removal is planned in 2021.

Rasp Mine 68 of 93

3.12 Weeds

During site inspections in 2019, individual Bush Tobacco (*Nicotiana glauca*) trees and a stand of rhizomatous bamboo (likely *Phyllostachys spp*) have been identified for removal in 2021. The Bush Tobacco, which grows along water storages and some isolated locations on dumps, will be controlled by spraying. Attempts in 2019 to remove the some tobacco by cutting at the stump was unsuccessful as the plants have grown back. Bamboo is growing in the Eyre St trench and will likely be sprayed with a Glyphosate-based herbicide.

3.13 Blasting

There are six monitors installed to record blasting vibration and over pressure. Blast monitors are installed at five locations around Broken Hill and there is one monitor located on-site near the core shed (this is used to monitor blast impacts at South Road). Locations are shown on **Figure 6-2**.

If a blast complaint is received, the complainant is given the opportunity to have a 'roving monitor' placed at their residence/location. By doing so BHOP can monitor the impact at the location for a time. Normally, a roving monitor is placed at the complainants' location for at least two months to develop an accurate K Factor, which is used in blast design to predict ground vibration at a set location. BHOP maintains a spare monitor to replace compliance monitors removed for calibration or due to fault. In 2020, BHOP purchased three additional monitors to be employed as compliance monitors. In April 2017, blast monitor V4 at 123 Eyre St was removed at the residents request and placed at the Eyre St Bowls Club.

Table 6-16 and **Table 6-17** lists the criteria for blasting ground vibration and overpressure for Western Mineralisation / Main Lodes (Western Min/Main Lodes) and Block 7, respectively.

Table 3-16 Overpressure and Ground Vibration Western Min/Main Lodes (excluding Block 7)

Location	Airblast Overpressure (dB(Lin Peak))	Ground Vibration (mm/s)	Allowable Exceedance
Residence on privately owned land (7am-7pm)	115	5	5% of the total number of blasts over a 12- month period ^{ab}
(7am-7pm)	120	10	0%
(7pm-10pm)	105	-	-
(10pm-7am)	95	-	-
Public Infrastructure ^d	-	100	0%

Rasp Mine 69 of 93

0%

Ground Vibration Airblast Overpressure Location Allowable Exceedance (dB(Lin Peak) (mm/s) Residence on 5% of the total number of privately owned land blasts over a 12-month 115 3 (interim)^c perioda (7am-7pm) (7am-7pm) 10 120 0% 105 _ -(7pm-10pm) (10pm-7am) 95 **Broken Hill Bowling** Club, Italio (Bocce) 50 0% Club, Heritage Items within CML7 Perilya Southern 100 0% Operations

Table 3-17 Overpressure and Ground Vibration Block 7 (includes Zinc Lodes)

The Project Approval provides the following notes to these Table 3-1618 and 6-19:

- a) The allowable exceedance must be calculated separately for development blasts and production blasts;
- b) The 5% allowable exceedance does not apply to production blasts until the Proponent has successfully completed a Pollution Reduction Program aimed at achieving this goal, as required by the EPA under the Proponent's EPL (No. 12559), or as otherwise agreed with the EPA;

100

- c) The interim criteria applies unless and until such time that the Proponent has written consent from the Secretary to apply site specific criteria in accordance with condition 19 of this approval; and
- d) The Proponent must close South Road to pedestrians if blasts are expected to exceed a peak particle velocity ground vibration of 65 mm/s at the road reserve surface, while the blast firing occurs.

In addition, the following conditions also apply:-

Public Infrastructure^d

- Production blasts may occur between 6.45 am and 7.15 pm on any day
- 1 production blast per day, with 6 per week averaged over a calendar year
- 6 development blasts per day, with 42 per week averaged over a calendar year

In accordance with Project Approval and EP Licence conditions:

- All production-blasting times occurred between 6.45am and 7.15pm on any day.
- Production blasts averaged 3.2 per week over the previous calendar year
- Development blasts averaged 31.4 per week over the previous calendar year

A total of 1,634 blasts were fired during the reporting period, 1,467 for development and 167 for production. **Table 3-19** and **Table 3-21** lists the total number of blasts for each area per month during the reporting period and **Tables 3-20** and **3-22** summarise the blasts over 5 mm/s (Western Min/Main Lodes) and 3 mm/s (Block 7). "No Record" are the number of blasts that did not trigger vibration monitors.

In the Western Mineralisation/Main Lodes mining areas (external to Block 7), 1,634 blasts were fired. Of these, 1,467 were for development and 167 were for production. Nine blasts exceeded 5 mm/s, all recorded from production blasts. The percentage of production blasts exceeding 5 mm/s was 4.8% and the percentage of development blasts was 0.0%, both within the criteria of 5% allowable exceedance.

Blast monitors are set to trigger (record) when they detect ground vibration of 0.13 mm/s or higher.

Rasp Mine 70 of 93

Table 3-18 Western Mineralisation/Main Lodes Summary of Blasts for Reporting Period (2020)

		Western Mineralisation / Main Lode											
		F	roductio	n			D	evelopme	ent				
	Blasts	< 5	>= 5	>= 10	No Trigger								
Jan 2020	19	18	1	0	0	158	0	0	0	158			
Feb 2020	20	17	2	0	1	132	0	0	0	132			
Mar 2020	21	16	4	0	1	135	0	0	0	135			
Apr 2020	14	11	1	0	2	158	0	0	0	158			
May 2020	13	13	0	0	0	153	0	0	0	153			
Jun 2020	14	14	0	0	0	157	0	0	0	157			
Jul 2020	11	11	0	0	0	123	0	0	0	123			
Aug 2020	12	12	0	0	0	137	0	0	0	137			
Sep 2020	12	12	0	0	0	104	0	0	0	104			
Oct 2020	13	12	0	0	1	91	0	0	0	91			
Nov 2020	10	8	0	0	2	61	0	0	0	61			
Dec 2020	8	8	0	0	0	58	0	0	0	58			
TOTAL	167	152	8	0	7	1467	0	0	0	1467			

Table 3-19 Western Mineralisation/Main Lodes Blasts > 5 mm/s for the Reporting Period (2020)

Production	Blasts >5 mm/s	Result	Development	Blasts >5 mm/s	Result	TOTAL	Blasts >5 mm/s	Result
167	8	4.8%	1467	0	0%	1,634	8	0.49%

All criteria were met for the Western Mineralisation / Main Lodes during the reporting period.

In Block 7, mining areas (including the Zinc Lodes), no production blasts were fired during the reporting period.

Rasp Mine 71 of 93

Table 3-20 Block 7 (and Zinc Lodes) Summary of Blasts for the Reporting Period (2020)

	Block 7 (includes Zinc Lode)									
	Production					Development				
	Blasts	< 3	>= 3	>= 10	No Trigger	Blasts	< 3	>= 3	>= 10	No Trigger
Jan 2020	0	0	0	0	0	0	0	0	0	0
Feb 2020	0	0	0	0	0	0	0	0	0	0
Mar 2020	0	0	0	0	0	0	0	0	0	0
Apr 2020	0	0	0	0	0	0	0	0	0	0
May 2020	0	0	0	0	0	0	0	0	0	0
Jun 2020	0	0	0	0	0	0	0	0	0	0
Jul 2020	0	0	0	0	0	0	0	0	0	0
Aug 2020	0	0	0	0	0	0	0	0	0	0
Sep 2020	0	0	0	0	0	0	0	0	0	0
Oct 2020	0	0	0	0	0	0	0	0	0	0
Nov 2020	0	0	0	0	0	0	0	0	0	0
Dec 2020	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0

Table 3-21 Block 7 Blasts Exceeding 3 mm/s for Reporting Period (2020)

Prod	Blasts >3 mm/s	Result	Dev	Blasts >3 mm/s	Result	TOTAL	Blasts >3 mm/s	Result
0	0	0%	0	0	0%	0	0	0%

Table 3-22 lists the highest recorded results for ground vibration (mm/s) at each of the vibration monitors.

Table 3-22 Ground Vibration Results at Vibration Monitors for the Reporting Period (2020)

Vibration Monitor/Location	Highest Recorded Ground Vibration (mm/s)
V1 Silver Tank (located on CML7)	2.01
V2 Hire yard	6.09
V3 Air Express	7.34
V4 123 Eyre St / Bowls Club	7.68
V5 80 Eyre St	4.86
V6 BHOP Core Shed (located on CML7)	8.07

All blasts recorded off-site were under 10 mm/s.

There were no exceedances of criteria for overpressure levels.

Rasp Mine 72 of 93

3.14 Operational Noise

During the reporting period, noise was generated by operational activities, movement of heavy vehicles and delivery trucks leaving and entering site.

Noise monitoring is completed annually at noise monitoring locations shown together with the relevant location criteria in **Table 3-23**.

During the reporting period, EMM Consulting Pty Ltd conducted a noise assessment for these receptors, **Figure 3-19**. Attended noise monitoring was conducted during two consecutive night-time periods from 15 to 16 December 2020 to quantify off-site noise levels from the Rasp Mine. While the EPL nominates noise limits for day, evening and night, attended monitoring was completed during the night-time period to minimise the contamination of monitoring data by extraneous noise sources (e.g. domestic and road traffic noise).

A total of 28 operator-attended noise measurements were completed, including two measurements at each of the 14 monitoring locations. For 2 out of the 28 samples the wind speed was below 3 m/s and therefore the noise limits did apply for these samples according to the site's EPL. Site noise was inaudible during 21 of 28 measurements. The Rasp Mine noise contributions satisfied the relevant night-time noise limits at all assessment locations. Noise monitoring results are shown in **Table 3-24**.



Figure 3-19 Noise Receptors

Low frequency noise was assessed by using the Noise Policy for Industry (NPfl) (EPA 2017) methodology for each attended measurement and for audible contributions only. Low frequency noise, as defined in the NPfl, was not identified during the attended measurements.

Rasp Mine 73 of 93

Rasp Mine LAeq,15min noise contributions (including the addition of the relevant modification factor) satisfied the relevant night-time noise limits at all assessment locations, including during attended measurements when noise limits did not apply due to adverse weather conditions

Noise attenuation measures on site include:

- Plant and equipment operator training. This included correct gear selection to minimize noise emission, retraining in travelling haul road procedure and educating personnel of the noise criteria for site.
- The use of an "ice-creaming" technique when loading the crusher allows the crusher to be loaded to maximum capacity at all times reducing the noise generated by rock fall onto the grizzly. "Ice-creaming" is where the crusher bin volume is maintained at a high level by the ROM front end loader.
- Optimisation of haul truck speed and gear changing via the use of intermediate markers along haulage route.
- Extension of both length and height of the existing earth bund along the southern haul road (from Kintore Pit to ROM pad).
- Installation of noise abatement material in the crusher house.
- A 2.5 m high by 6 m long tyre wall was constructed to reduce noise transition from the filtration area of the processing plant.

Table 3-23 Operational Noise Criteria

Location	Day (dB(A))	Evening (dB(A))	Night (dB(A))
A1 – Piper Street North	38	37	35
A2 – Piper Street Central	38	37	35
A3 – Eyre Street North	44	41	39
A4- Eyre Street Central	44	41	39
A5 – Eyre Street South	44	41	39
A6 – Bonanza and Gypsum Streets	48	41	39
A7 – Carbon Street	35	35	35
A8 – South Road	48	39	39
A9 – Crystal Street	46	39	39
A10 – Barnet and Blende Streets	42	41	35
A11 – Crystal Street	46	39	39
A12 – Crystal Street	46	39	39
A13 – Eyre Street North 2	38	35	35
A14 – Piper Street North	35	35	35

Rasp Mine 74 of 93

Table 3-24 Noise Monitoring Results

Location	Date	Start	LA _{EQ}	LA _{MAX}	Rasp contribution LA _{EQ(15-min)}	Criteria	Compliant
A13	15/12	22:06	56	76	<30	35	NA
A14	15/12	22:25	36	50	IA	35	NA
A12	15/12	22:48	51	72	36	39	NA
A11	15/12	23:07	54	79	38	39	NA
A10	15/12	23:34	45	65	32	35	NA
A9	15/12	23:55	45	79	34	39	NA
A8	16/12	00:15	40	54	IA	39	NA
A7	16/12	00:36	44	71	IA	35	NA
A6	16/12	00:56	48	69	IA	35	NA
A5	16/12	01:14	55	75	IA	35	NA
A4	16/12	01:32	45	71	<30	39	NA
A3	16/12	01:50	42	68	IA	39	NA
A2	16/12	02:09	39	59	IA	35	NA
A1	16/12	02:27	44	72	IA	35	NA
A13	16/12	22:10	58	76	IA	35	NA
A14	16/12	22:28	37	52	<30	35	NA
A1	16/12	22:47	41	60	IA	35	NA
A2	16/12	23:05	39	53	IA	39	NA
A3	16/12	23:23	47	73	IA	39	NA
A4	16/12	23:49	51	76	IA	39	NA
A5	17/12	00:00	55	81	IA	39	NA
A6	17/12	0:18	54	71	IA	39	NA
A7	17/12	00:37	51	71	IA	35	NA
A8	17/12	00:56	39	71	IA	39	NA
A9	17/12	01:14	52	74	IA	39	NA
A10	17/12	01:32	39	55	IA	35	NA
A11	17/12	01:51	37	66	IA	39	NA
A12	17/12	02:09	54	83	38	39	NA

IA: Inaudible

3.15 <u>Visual, Stray Light</u>

Light towers around machinery, where practicable, are designed to face light away from residents.

There were no light complaints for the reporting period.

3.16 Indigenous Heritage

There are no known significant indigenous sites within CML7.

3.17 Natural and Social Heritage

3.17.1 Conservation management strategy

The Conservation Management Strategy draft has been developed however cannot be finalised until the Line-of-Lode Interagency Panel provides advice.

An Options Analysis Study for mine closure is being developed along with recommendations for rehabilitation methods and trials.

Rasp Mine 75 of 93

In February 2020 a structural engineer was engaged to inspect a number of structures on site to determine maintenance requirements. The structures include the:

- No4 Headframe.
- Thompsons Headframe,
- Thompsons Change house,
- Carpenters Shop,
- Maintenance Workshop,
- Fire and Ambulance Station,
- South Mill,
- Pattern Store,
- BHP Pit structures.
- Electrical Workshop,
- · Training Centre, and
- Remnant concrete walls at the site entrance.

Each report identified the condition of the structure and made recommendations for works to repair or stabilise the structure.

3.18 Spontaneous Combustion

Products with high sulphur content (tailings, ore and concentrate) are prone to spontaneous combustion. Combustion is caused by the oxidation of the sulphides, which is an exothermic chemical reaction that causes heat build-up, and the remaining sulphides begin to start smouldering. In extreme cases, the sulphides may burn producing a flame. Requirements for combustion to occur are high sulphur material, oxygen, moisture and sufficient material to generate heat build-up.

No incidences occurred during the period.

3.19 Bushfire

No bushfires affected the site during the reporting period. Broken Hill and surrounding areas have limited potential for bushfires due to the lack of suitable fuel.

The Rasp Mine has a fully equipped fire truck available at all times to respond to fires and has a trained mines rescue team for firefighting. There are fire hydrants and hoses installed at strategic locations across the mine site and within vehicles with deluge systems installed on loaders and in the underground fuel bay.

3.20 Mine Subsidence

Monitoring occurs on Bonanza St/South Road to detect any movement that may be associated with mining activities in the Zinc Lodes.

Surveying results indicate that most of the detected "movement" is due to instrument set-up errors, atmospherics etc. This is evidenced by the fact that the plot for each prism vector looks very similar to the same vector for the other prisms (i.e. all northing plots look the same, all easting plots look the same) indicating that the errors affect all prisms. Mining in the area of the Zinc Lodes has now been completed with the exception of some minor remnant ore extraction, BHOP will continue to monitor road movement and has back-filled the mining/production voids in this area.

No subsidence from mining activities was detected in the reporting period.

3.21 Methane Drainage/Ventilation

As the nature of the mine is not gassy (e.g. coal mine), there are no permanent methane monitoring locations. However, all personnel carry gas monitors while performing the following underground activities to monitor any hazardous gases:

- All production rigs while drilling;
- All production loaders (Boggers) while bogging;

Rasp Mine 76 of 93

- All Jumbos;
- · Vent Officer while doing vent surveys;
- Re-Entry Crews while performing re-entry; and
- Service crew when required.

3.22 Public Safety

All active mine areas of the Rasp Mine site are signposted and fenced to restrict any unauthorised access.

Visitors to the mine are only allowed on site with management approval and are required to undertake a visitor briefing (induction), and are accompanied by a site representative at all times. Visitor briefing cards are distributed to ensure key information is readily at hand for visitors. Visitors must follow site policies and conform to personal protective equipment (PPE) requirements.

All employees and contractors complete a general induction and work area specific inductions where required (e.g. underground, mill).

3.23 Radiation

BHOP has a Radiation Management Licence, RML5063802 current until 26 July 2021. The Licence permits BHOP to "sell, possess, store or give away regulated material (including radiation apparatus, radioactive substances or items containing radioactive substances)".

Radiation is used in gauges in the processing plant to measure slurry density and identify the percentage of lead/zinc/iron. Radiation is used by technical services to identify the percentage of lead/zinc or other materials. The Rasp Mine Radiation Management Plan outlines how radiation and radiation equipment must be used, stored and disposed. An external contractor conducts biennial inspections of the individual radiation gauges on site while the site RSO conducts semi-annual inspections. During the reporting period, no issues were identified during inspections and audits in relation to their use.

The Rasp Mine Radiation Store meets the requirements for storage of fixed radiation gauges, Code of Practice for the Safe Use of Fixed Radiation Gauges, ARPANSA. The Radiation Store is of solid construction (historically in the early 1900's it was used as an explosives magazine store) and is located on the side of a hill so it is not prone to flooding. It is clearly signed and is not accessed by the public.

No radiation apparatus was dismantled during the reporting period.

Table 3-25 lists the regulated materials (fixed radiation gauges) that make up the schedule to the licence.

Table 3-25 Regulated Radiation Equipment

Location	Rasp Mine Asset Number	Туре	Equipment	Components	Purpose
Mill - Flotation building	2321727346	Radiation apparatus	X-RF	Control console / generator X-ray tube insert	Analysis of materials
Primary cyclone feed	1566643388	Sealed source device	Fixed Radiation Gauge	- Container - Sealed source	Density gauge
Backfill plant- transfer pump discharge	1570661547	Sealed source device	Fixed Radiation Gauge	- Container - Sealed source	Density gauge
Admin Bld, Geological vault	2321727385	Radiation apparatus	X-RF	- Control console / generator	Analysis of materials
Radiation Store 'REMOVED FROM SERVICE'	1570661354	Sealed source device	Fixed Radiation Gauge	- Container - Sealed source	Density gauge

Rasp Mine 77 of 93

4. WATER MANAGMENT

Raw water and potable water are supplied by Essential Water with take off valves at the Eyre Street entrance to the Rasp Mine. Raw water, water from the town supply, is supplied untreated to the mine site via existing connections.

Potable water is supplied direct from the town supply and is used for drinking, safety showers and in the crib rooms and change houses. Water from the town supply is treated at the Mica Street treatment plant and supplied to the Project via existing connections and is used for showers, toilets, and laundry. Average annual usage of potable water is 9 ML supplying the offices, workshop, core shed and processing facility.

BHOP are required to dewater the mine workings to ensure the safety of both the employees at the adjacent Perilya South Mine and its own employees. This water is extracted under licence and can be used on the Rasp Mine site or transferred for use at the Perilya operations.

Water is reclaimed onsite from various sources to be recycled for the Project, mainly from underground dewatering. If necessary, the reclaimed water is treated onsite to ensure that it is suitable for use as process water in both the processing plant and underground operations. Reclaimed water is returned after treatment to the process water tank which has a three hour holding capacity or to the Silver Tank which has a capacity of 8 ML.

The sources for the reclaimed water include:

- No. 7 Shaft dewatering;
- Underground mine operations dewatering;
- TSF decant pond; and
- Stormwater containment dams (only during extreme rain events)

The Rasp Mine has installed a number of water meters to monitoring water supplies and movements these are listed in **Table 4-1**.

Flow Meter	Recording Frequency
Underground supply	Weekly
Mill supply	Weekly
Concentrate shed	Weekly
Raw water supply	Weekly
Mine water (U/G water & Shaft 7)	Weekly
Evaporation dam pump well	Weekly
Patto's Pond	Weekly

Table 4-1 Flow Meters and Recording Frequency

Raw water used during the period was 322 ML, increased from 316 ML used in the previous period. This was primarily due to the use in embankment construction works and dust suppression.

Potable water used during the period was 13.4 ML, decreased from 15.6 ML used in the previous period due to a decrease in personnel and contractors.

BHOP has a water extraction licence, 85BL256102, to extract by active pumping 370 ML pa.

No water was transferred to Perilya South Mine Operations, during the reporting period.

Rasp Mine 78 of 93

5. REHABILITATION

5.1 Buildings

No buildings were constructed on CML7 in 2020.

5.2 Rehabilitation and Disturbed Land

Dust deposition gauges were installed on top of Mt Hebbard in October 2017 as part of the waste rock trial to be undertaken in this area in 2018. It was proposed in the MOP to install the gauges to monitor current dust conditions for a 12 month period, then place the waste rock and re-install the gauges for another 12 month period and compare results. As BHOP are still using crushed extracted material (waste rock) in the construction of the TSF2 embankments, waste rock has not yet been applied to the surface of Mt Hebbard. As 12 months of dust results had been collected from the Mt Hebbard dust gauges, dust suppressant was applied at the end of 2018 and again in 2020 to control dust as the surface of Mt Hebbard is one of the "free areas" identified on the site to be potential contributors of dust to the surrounding environment.

BHOP was considering expanding the Options Study as a project with the Centre for Mined Land Rehabilitation, University of Queensland, however, BHOP has decided to put the project on hold due to the lack of feedback from the Minister for Cabinet Interagency Panel on the Line of Lode. Guidance from the Resources Regulator following the Department of Premier & Cabinet Broken Hill Post Mining Interagency meeting held in Broken Hill on 13 and 14 August 2019 is still forthcoming. During the Interagency meeting there was agreement that paddock dumping of waste rock on free areas may be a suitable method of capping them. Following the Resources Regulator Targeted Assessment Program (TAP) audit for Soils and Minerals in November 2020, BHOP are working to assess the volumes of suitable waste rock required for free area coverage and other surface usage purposes. The Draft Options Study developed in 2018 will be amended in accordance with the MOD6 Development Application to be finalised and submitted early in 2021.

Cone Penetrometer Testing was conducted across tailings dumps on site in 2020 as part of the Instability and Inrush Risk Assessment and findings will be used to conduct a risk assessment around placing waste rock on historical tailings facilities and waste dumps.

Table 5-1 and **Table 5-2** detail disturbed areas. No new areas were disturbed during the reporting period.

Rasp Mine 79 of 93

Table 5-1 Rehabilitation Summary

		Area Affected	/ Rehabilitated (he	ectares)
		To date 1/1/2020- 31/12/2020	Last Report 1/1/2019- 31/12/2019	Next Report 1/1/2021 – 31/12/2021
A:	MINE LEASE AREA			
A 1	Mine lease(s) Area	226.4	226.4	226.4
B:	DISTURBED AREAS			
B1 reha	Infrastructure area (other disturbed areas to be abilitated at closure including facilities, roads)	64.5	64.5	64.5
B2	Active Mining Area (excluding items B3 – B5 below)	11.5	11.5	11.5
В3	Waste emplacements, (active / unshaped / in or out-of-pit)	2.27	1.92	2.27
В4	Tailings emplacements (active / unshaped / uncapped)	3.8	3.8	3.8
В5	Shaped waste emplacement (awaits final vegetation)	0.0	0.0	0.0
ALL	DISTURBED AREAS	77.2	77.2	77.2
С	REHABILITATION			
C1	Total Rehabilitated area (except for maintenance)	149.1	149.1	149.1
D	REHABILITATION ON SLOPES			
D1	10 to 18 degrees	4.1	4.1	4.1
D2	Greater than 18 degrees	14.7	14.7	14.7
E	SURFACE OF REHABILITATED LAND			
E1	Pasture and grasses	N/A	N/A	N/A
E2	Native forest / ecosystems			
E3	Plantations and crops	2.6	2.6	2.6
E4	Other (include non-vegetative outcomes)	151.3	151.3	151.3

Table 5-2 Maintenance Activities on Rehabilitated Land

	Area Tre	ated (ha)	
NATURE OF TREATMENT	Report Period	Next Period	Comment / control strategies / treatment detail
Additional erosion control works (drains recontouring, rock protection)	0	0	N/A
Re-covering (detail further topsoil, subsoil, sealing etc.)	0	2.5	N/A
Soil treatment (detail – fertiliser, lime, gypsum etc.)	0	0	N/A
Treatment / Management (detail – grazing, cropping, slashing etc.)	0	0	N/A
Re-seeding / Replanting (detail – species density, season etc.)	0	0	N/A
Adversely Affected by Weeds (detail – type and treatment)	0	0.01	Bamboo, Bush Tobacco, Mesquite - spraying
Feral animal control (detail – additional fencing, trapping, baiting etc.)	0	0	Goats – Manual collection

Rasp Mine 80 of 93

6. COMMUNITY RELATIONS

6.1 Environmental Complaints

During the period of the AEMR, BHOP has maintained a register for community complaints and concerns which is available on the CBH website.

A total of 11 (22 in 2019) complaints were received over the reporting period relating to blasting vibration and noise; see **Table 6-1**.

Five complaints were made by the same complainant regarding noise that they believed were the result of site operations. After installing a blast monitor and noise monitor at residence and providing the data to noise consultants for review, it was determined that the site was not responsible for producing noise impacts at the residence.

In February 2020 a structural engineer was engaged to inspect eight residences and structures of complainants who requested the service in 2019. It was determined that any cracking and other damage claimed by complainants to be caused by blasting at BHOP was likely due to factors such as poor drainage and reactive soils generating vertical movement, and poor construction methods.

Rasp Mine 81 of 93

Table 6-1 Complaints register

6.2 Date of Complaint	6.3 Reason for Complaint	6.4 <u>Comment</u>
January 2020	No complaints in January.	
February 2020 Event #5558	Vibration	A complainant contacted BHOP about blast vibration from 2 February.
Event #3536		The Complainant had made a complaint to BHOP previously.
		Blast monitors were previously installed at the residence and have since been removed. The complainant was provided with a report of blast results for the period the monitors were installed.
		The complainant was contacted by a BHOP staff member.
		Vibration levels measured at nearby blast monitors were below licence limits.
March 2020	Vibration	A complainant contacted BHOP about blast vibration from 17 March.
Event #5667		The Complainant had made a complaint to BHOP previously.
		Blast monitors were previously installed at the residence and have since been removed. The complainant was provided with a report of blast results for the period the monitors were installed.
		The complainant was contacted by a BHOP staff

6.2 Date of Complaint	6.3 Reason for Complaint	6.4 <u>Comment</u>
		Wibration levels measured at nearby blast monitors were below licence limits.
April 2020	Vibration	An anonymous complainant contacted the NSW EPA about blast vibration from 1 April.
Event #5700		Blast vibration levels measured at compliance monitors were below licence limits.
		Blast vibration data was provided to the NSW EPA.
		No follow-up contact with the complainant was requested.
April 2020	Noise	 A complainant contacted the NSW EPA about ongoing noise and vibration at their residence from unidentified sources.
Event #5761		Blast data was provided to the EPA.
		The complainant was contacted by BHOP staff.
April 2020	Noise	 A noise monitor was installed in the complainants' residence to monitor noise levels, frequencies, and record audio at triggered levels.
Event #5761		A blast monitor was installed at the complainants' property to monitor vibration from blasts.

6.2 <u>Date of Complaint</u>	6.3 Reason for Complaint	6.4 <u>Comment</u>
		Noise consultants were engaged to review noise and blast monitor data collected from the residence to determine impacts from BHOP activities.
		A review of the noise and blast data collected determined that BHOP activities were not likely to be the source of any vibration and noise encountered at the complainants' residence.
		The review of the noise and blast data by consultants was provided in a report which was presented to the complainant.
April 2020	Vibration	A complainant contacted the NSW EPA about blast vibration from 29 April. The complainant details were not provided to CBH by the EPA
Event #5760		Blast vibration levels measured at compliance monitors were below licence limits.
		Blast vibration data was provided to the NSW EPA.
		No follow-up contact with the complainant was requested.
May 2020	Noise	A complainant contacted BHOP regarding noise during the night of 17 May.
Event #5761		The complainant had made a complaint to BHOP previously.
		BHOP staff have met with the complainant in

6.2 <u>Date of Complaint</u>	6.3 Reason for Complaint	6.4 <u>Comment</u>
		response to this complaint.
		A noise monitor was installed in the complainants' residence to monitor noise levels, frequencies, and record audio at triggered levels.
		A blast monitor was installed at the complainants' property to monitor vibration from blasts.
		 Noise consultants were engaged to review noise and blast monitor data collected from the residence to determine impacts from BHOP activities.
		A review of the noise and blast data collected determined that BHOP activities were not likely to be the source of any vibration and noise encountered at the complainants' residence.
		The review of the noise and blast data by consultants was provided in a report which was presented to the complainant and the EPA.
May 2020	Noise	A complainant contacted BHOP regarding noise during the night of 24 May.
Event #5761		The complainant had made a complaint to BHOP previously.
		BHOP staff have met with the complainant in response to this complaint.
		A noise monitor was installed in the complainants' residence to monitor noise levels, frequencies, and record audio at triggered levels.

6.2 Date of Complaint	6.3 Reason for Complaint	6.4 <u>Comment</u>
		A blast monitor was installed at the complainants' property to monitor vibration from blasts.
		 Noise consultants were engaged to review noise and blast monitor data collected from the residence to determine impacts from BHOP activities.
		A review of the noise and blast data collected determined that BHOP activities were not likely to be the source of any vibration and noise encountered at the complainants' residence.
		The review of the noise and blast data by consultants was provided in a report which was presented to the complainant and the EPA.
June 2020	No complaints in June.	
July 2020	Noise	A complainant contacted BHOP regarding noise during the night of 6 July.
Event #5923		The complainant had made a complaint to BHOP previously.
		BHOP staff contacted the complainant in response to this complaint.
		A noise monitor was previously installed in the complainants' residence to monitor noise levels, frequencies, and record audio at triggered levels.

6.2 <u>Date of Complaint</u>	6.3 Reason for Complaint	6.4 <u>Comment</u>
		A blast monitor was previously installed at the complainants' property to monitor vibration from blasts.
		 Noise consultants were engaged to review noise and blast monitor data collected from the residence to determine impacts from BHOP activities.
		A review of the noise and blast data collected determined that BHOP activities were not likely to be the source of any vibration and noise encountered at the complainants' residence.
		The review of the noise and blast data by consultants was provided in a report which was presented to the complainant and to the EPA.
July 2020	Noise	A complainant contacted BHOP regarding noise during the early morning of 30 July.
Event #6095		The complainant had made a complaint to BHOP previously.
		The complainant did not request further contact from BHOP staff regarding the complaint.
		A noise monitor was previously installed in the complainants' residence to monitor noise levels, frequencies, and record audio at triggered levels.
		A blast monitor was previously installed at the complainants' property to monitor vibration from blasts.

6.2 Date of Complaint	6.3 Reason for Complaint	6.4 <u>Comment</u>
		 Noise consultants were engaged to review noise and blast monitor data collected from the residence to determine impacts from BHOP activities. A review of the noise and blast data collected determined that BHOP activities were not likely to be the source of any vibration and noise encountered at the complainants' residence. The review of the noise and blast data by consultants was provided in a report which was presented to the complainant and to the EPA.
August 2020	No complaints in August.	
September 2020	No complaints in September.	
October 2020	No complaints in October.	
November 2020	No complaints in November.	

6.2 Date of Complaint	6.3 Reason for Complaint	6.4 <u>Comment</u>
December 2020	Vibration	A complainant contacted the NSW EPA about blast vibration on 17 December. The complainant details were not provided to CBH by the EPA.
		Blast vibration levels measured at compliance monitors were below licence limits.
		Blast vibration data was provided to the NSW EPA.
		No follow-up contact with the complainant was requested.

6.5 Community Liaison

During the period of the AEMR, BHOP has conducted direct and indirect consultation with neighbours, members of the public, local community organisations, state government agencies and local council.

The major stakeholders include:

- Broken Hill City Council (BHCC)
- Environment Protection Authority (EPA)
- Department of Planning Industry and Environment (DPIE)
- Department of Industry- Lands (DI-L)
- Essential Energy
- · Essential Water
- Australian Rail Track Corporation Ltd (ARTC)
- · Broken Hill Health Service, Child and Family Health Centre

The following community communication activities occurred during the period:

- BHOP was represented at all meetings of the BHCC Lead Reference Group.
- Child and Family Health Centre Lead Week each year BHOP would participate in the Lead week program and provide water, fruit, a fruit or vegetable seedling, and bags for these items and information pamphlets provided by the Leadsmart group. In 2020 however, the function did not take place due to COVID-19 restrictions.

6.6 Community Support

During the reporting period, Rasp provided \$20,750 to community groups.

Moving forward BHOP will focus on supporting local education and major events that support the promotion of the Broken Hill Community.

Rasp Mine 90 of 93

7. INDEPENDENT AUDIT

An independent audit was conducted by Integrated Environmental Systems Pty Ltd in the week of 9 to 15 March 2019. The audit was commissioned by BHOP to satisfy Schedule 4, Conditions 7 and 8 of the Project Approval, requiring an audit to be conducted every three years.

The audit was conducted tom determine how BHOP was maintaining compliance against applicable conditions specified in:

- Project Approval 07_0018 MOD 5 approved under the former Part 3A of the Environmental Planning and Assessment Act 1979 (which continues as an approval of a transitional Part 3A project under Schedule 6A of that Act) by the delegate of the NSW Minister of Planning ('Project Approval' or 'PA');
- Environment Protection Licence Number 12559 as at 21 December 2017 ('EPL'); and
- Consolidated Mining Lease Number 7 as renewed on 17 January 2007 ('CML7').

BHOP's level of compliance with the applicable conditions (i.e. all conditions except those which were 'not triggered') in each instrument was as follows:

- BHOP was compliant with 48 of the 67 applicable Project Approval conditions;
- BHOP was compliant with 52 of the 75 applicable EPL conditions;
- BHOP was compliant with 24 of the 28 applicable CML7 conditions.

The non-compliance against the Conditions of CML7 are as follows:

- Notice to Landholders Condition 1 Administrative non-compliance At the time of this February 2019 audit, BHOP was unable to provide evidence of written notification to landholders of the leased land or of a published notice in a newspaper circulating in the lease area.
 - It was determined by BHOP that the notification was not provided.
- Mining, Rehabilitation, Environmental Management Process (MREMP) Mining
 Operations Plan Condition 2 Administrative non-compliance In relation to
 paragraphs (a) and (b) of this condition:
 - (a) BHOP was unable to provide evidence of the Resources Regulator's approval of the current MOP; and
 - (b) The current MOP does not identify how the mine will be managed to allow mine closure due to an apparent lack of agreement for end land use, which has continued to the time of this February 2019 audit.
 - A notice of assessment of 30 January 2018 acknowledges receipt of the RCE and, therefore, acceptance of the MOP. An observation to indicate on the cover of the MOP the approval status as pending or approved will be employed going forward.
- Reports Condition 7 Non-compliant (low risk) At the time of this February 2019 audit, BHOP was unable to provide evidence of exploration reports being prepared and provided to the DPE (Division of Resources & Geoscience) within the required 28-day period.
 Reports were subsequently provided to Resources and Geosciences.
- Exploratory drilling Condition 15 Non-compliant (low risk) At the time of this
 February 2019 audit, BHOP was unable to provide evidence of having given the minimum 28
 days' notification of exploratory drilling to the DPE (Division of Resources & Geoscience).
 Going forward, BHOP will provide a minimum of 28 days notification of explanatory drilling to
 Resources and Geoscience.

Rasp Mine 91 of 93

8. INCIDENTS AND NON-COMPLIANCES DURING THE REPORTING PERIOD

Environmental incidents are reported using the Rasp Incident Reporting Procedure BHO-SAF-PRO-101.

BHOP maintains a Pollution Incident Response Management Plan BHO-ENV-PLN-002 on the CBH website in accordance with EPA requirements.

There were two reportable incidents/non-compliances during the reporting period.

Silver Tank High Volume Air Sampler software failure

On 2 January 2020, the Silver Tank TSP and PM_{10} high volume air samplers (EPL 12559 Monitoring Points 10 and 11) failed to monitor as required by DA_07_0018 and EPL 12559 due to a software fault in this particular model of High Volume Air Sampler.

ACOEM (HVAS supplier) knew of the issue the day before but BHOP only received the notification on 2 January which was the scheduled run date for the high volume air samplers. Upon receiving the notification from Acoem, BHOP environmental staff inspected the high volume air samplers and confirmed they were not running.

BHOP environmental staff have reprogrammed the site high volume air samplers in accordance with the instructions in the Clock Issue Technical Note provided by ACOEM to enable the HVAS to run as scheduled until replacement ECUs were issued and installed.

Winds were predominantly from the SE on 2 January so dust collected by the high volume air samplers would likely have come from off-site.

Emissions exceedance at Crusher Baghouse

Quarterly emissions testing conducted at the Crusher Baghouse, EPL ID 2, on 9 December 2020 returned results (received January 2021) exceeding the EPL limits for Total Suspended Particles (TSP) and Type 1 and 2 Substances. The TSP result from the test conducted on 9 December 2020 was 58.9 mg/m3 (EPL limit 20 mg/m3), and the Type 1 and 2 Substance result from the 9 December 2020 test was 4.32 mg/m3 (EPL limit 1 mg/m3).

After receiving the December 2020 monitoring report in January 2021, crushing activities were stopped and the baghouse was shut down. An inspection of the baghouse seals and filter bags was conducted on 11 January utilising a powdered dye to detect holed filter bags and/or dust leakage points. The use of the powdered dye is a common process also utilised by baghouse specialists to detect dust leakage issues. During the first inspection, a filter bag with a significant tear was detected due to the presence of visible powdered dye around the top of the damaged filter bag. This filter bag was replaced and another test was undertaken, again using the dye powder. On this occasion another two filter bags with smaller holes were detected. These filter bags were replaced and again the test was repeated. On the third test, minimal dye was detected on the 'clean side' of the baghouse, and only with the aid of a ultra-violet light source. One bag with a small hole (<10mm) was identified and replaced. Based on this result, it was determined the crusher and baghouse could be restarted and a follow-up monitoring event was organized with Assured Environmental which was conducted on 20 January 2021.

Environmental harm was not likely as the baghouse is situated in a sheltered area and the winds between 9 December 2020 and 11 January 2021 were predominantly from the South, so much of the dust emitted would be contained locally or could be expected to be deposited in the Blackwoods Tailings Facility. A review of PM10 air monitoring data for air monitors placed north of the baghouse exhaust did not show any noticeable increase in dust levels recorded.

Rasp Mine 92 of 93

9. ACTIVITIES PROPOSED IN THE NEXT AEMR PERIOD

The following lists the proposed activities during the next AEMR period in line with the MOP some of these activities continue into the next reporting period:

- Update and issue the draft Conservation MP following submission of MOD6.
- Update and issue the Rehabilitation Management Plan following submission of MOD6.
- Finalise the options analysis.
- Trial waste-rock capping of Mt Hebbard.
- Undertake on-going maintenance and inspections of heritage buildings as required.
- Continue application of chemical dust suppressant to 'free areas' of the site to minimise dust generation, including the trialling of an alternative product for unsealed roads.
- Eyre Street dam project, remove contaminated bunding and materials from the dam and cap
 the area with suitable waste rock or revegetate the area or a mixture of the two. Sampling of
 rain runoff will be taken to assess if water quality has improved.
- Ryan Street dam project BHOP has engaged consultants to determine and advise on appropriate closure strategies for this area. Water sampling of rain runoff will also be undertaken for rainfall events to confirm level of rainwater contamination.
- Weed control.
- Sediment removal in water storages.

Rasp Mine 93 of 93