

Consulting • Technologies • Monitoring • Toxicology

27 March 2017

Gwen Wilson Broken Hill Operations Pty Ltd

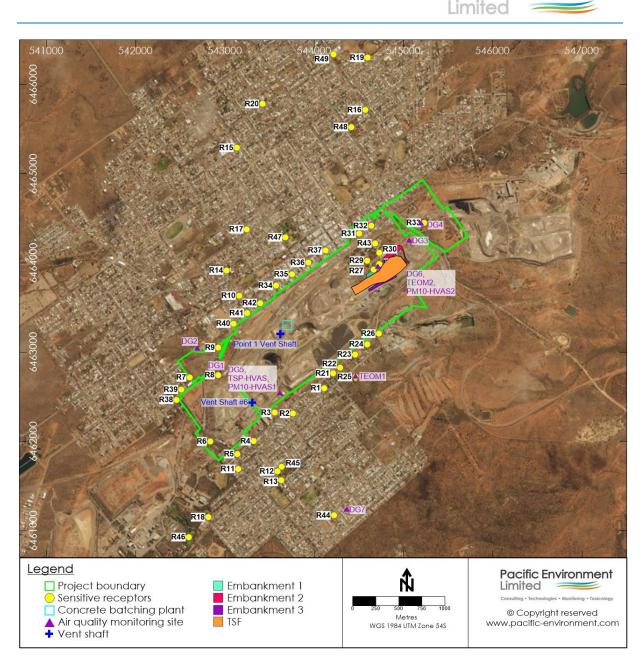
Dear Gwen,

Re: Air Quality Assessment for the Rasp Mine Modification 4

1 INTRODUCTION

Pacific Environment has been commissioned by Broken Hill Operations Pty Ltd (BHOP), a wholly owned subsidiary of CBH Resources Ltd (CBH), to complete an air quality and greenhouse gas impact assessment for a proposed Modification to Rasp Mine, Broken Hill (Modification 4).

The Rasp Mine is an underground silver/zinc/lead operation located within the city limits of Broken Hill, NSW. The Mine also has the facilities to process the ore and dispatch concentrate products from the site by rail. There are a number of auxiliary facilities including maintenance workshops, inventory, chemical and explosives storage, backfill plant and rail siding.


BHOP seeks to modify the Rasp mine approval to:

- Install a Concrete Batching Plant (CBP) for the manufacture of fibrecrete and concrete for use at the Mine site; and
- Extend the life of the Blackwood Pit Tailings Storage Facility (TSF2) by installing embankments and a retaining wall at low points along its perimeter. TSF2 would comprise Embankments 1, 2 and 3.

The location of the proposed CBP and embankments that would comprise TSF2 are shown in Figure 1-1.

The following scope of work has been completed as part of the subject air quality assessment:

- Process site representative meteorology consistent with the methodology undertaken for previous air quality assessments to obtain a minimum one year of meteorological inputs suitable for use within an atmospheric dispersion model (AERMOD);
- > Determine baseline local air quality based on 2016 operations;
- > Undertake atmospheric dispersion modelling for the worst case emissions scenario; and
- Present the predicted air quality impacts (TSP, PM₁₀, PM_{2.5}, dust deposition and lead) within a letter report suitable for submission to the relevant authorities (NSW Department of Primary Industries (DPI) and Environment Protection Authority (EPA)).

Figure 1-1: Location of proposed Concrete Batch Plant, Embankments 1,2 and 3, sensitive receptors and air quality monitoring network

2 AMBIENT AIR QUALITY CRITERIA

The Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (Approved Methods) (EPA, 2016) specifies air quality assessment criteria relevant for assessing impacts from air pollution. The air quality goals relate to the total particulate matter (PM) burden in the air and not just the PM from the Project. In other words, consideration of background PM needs to be made when using these goals to assess potential impacts. These criteria are health-based (i.e. they are set at levels to protect against health effects). These criteria are consistent with the National Environment Protection Measure for Ambient Air Quality (referred to as the Ambient Air-NEPM) (NEPC, 1998a).

Table 2-1 provides a summary of the air quality goals for pollutants that are relevant to this study. It is important to note that, with the exception of deposited dust, the criteria are applied to the cumulative impacts due to the proposed modification and other existing sources.

Table 2-1: NSW EPA Air Quality Criteria								
Pollutant	Standard	Averaging Period						
TSP	90 µg/m³	Annual						
PM10	50 µg/m³	24-Hour						
	25 µg/m³	Annual						
PM _{2.5}	25 µg/m³	24-Hour						
	8 μg/m³	Annual						
Pb (TSP fraction)	0.5 µg/m³	Annual						
Deposited dust	2 g/m²/month (incremental)	Annual						
	4 g/m²/month (cumulative)							

Notes: µg/m³ – micrograms per cubic metre.

In 2017 the EPA released an update to the Approved Methods **(EPA, 2016)** that includes an update to the annual PM₁₀ criterion from 30 µg/m³ to 25 µg/m³. It is noted that the current Project Approval for Rasp Mine does not currently reflect this update. For the purposes of this assessment the criterion used is in line with current NSW policy **(EPA, 2016)**.

3 DISPERSION MODEL SET UP

3.1 Emissions inventory

Based on the project description, it is considered that the construction of Embankment 2 (E2) has the greatest short-term particulate emission potential, and has hence been used to predict the worst case 24-hour emissions. As Embankment 2 construction would take place over approximately 21 weeks it has been combined with Embankment 3 (16 weeks) for the consideration of annual averaging periods. Both the short-term and long-term emission calculations include emissions from the construction of a storm water collection pond, and for conservatism, the operations of the concrete batching plant.

The assumptions in the emissions estimates are generally based on those documented within **Environ** (2010), with detailed information on mining operations having been provided by Rasp Mine.

PM emissions have been calculated for annualised and short-term scenarios in accordance with the relevant PM averaging periods:

- Annual average emissions based on total material quantities to be handled for the construction of E2, E3 and CBP operating at 15,000 m³ per year.
- Worst case 24-hour emissions based on maximum daily rate of 500 m³/day to be handled for the construction of E2 and CBP operating at 40 m³ per day.

The assumptions adopted in calculating PM emissions for this assessment have followed those used in **Environ (2010)**. A detailed list of assumptions are provided in **APPENDIX A**.

The calculation of potential lead (Pb) emissions was based on the percentage lead composition of different material substrates as established within **Environ (2010)**. In this manner, TSP emission estimates provided the basis for projecting suspended metal concentrations for comparison with NEPM criterion.

Compositional data on waste rock (used for embankment construction), unpaved roads and free areas, based on site-specific material sampling, has been made available for this assessment. These data are anticipated to provide a conservative estimate of lead percentage composition of waste rock. The adopted percentage lead composition used in this assessment are as follows:

- ➢ Waste rock = 0.5% Pb
- > Unpaved roads = 2.4% Pb
- > Free areas = 1.4% Pb.

Table 3-1 provides a summary of the PM and lead emissions inventory used in the dispersion modelling.

Activity		Annual	emissions		Worst co hour emi	
	TSP	PM 10	PM _{2.5}	Pb(TSP)	PM 10	PM _{2.5}
Waste rock - load in pit	59.3	28.0	4.2	0.3	176.4	26.7
Waste rock - haul to E2 (sealed)	1,170.1	125.6	30.4	28.1	1,413.5	342.0
Waste rock - haul to E2 (unsealed)	1,875.7	405.2	40.5	45.0	2,956.5	295.6
Waste rock - dump at E2	59.3	28.0	4.2	0.3	176.4	26.7
Prep E2 footprint - load at E2	4.1	0.7	0.3	0.1	-	-
Prep E2 footprint - haul within E2	50.7	11.0	1.1	1.2	-	-
Prep E2 footprint - dump at E2	4.1	1.9	0.3	0.1	-	-
Filter sand - load at external site	5.1	2.4	0.4	-	-	-
Filter sand - haul to E2 (sealed)	80.5	10.9	2.6	1.9	-	-
Filter sand - haul to E2 (unsealed)	-	-	-	-	-	-
Filter sand - dump at E2	5.1	2.4	0.4	-	-	-
Crushed rock rest layer - load in pit	4.1	1.9	0.3	0.0	-	-
Crushed rock rest layer - haul to E2 (sealed)	80.7	8.7	2.1	1.9	-	-
Crushed rock rest layer - haul to E2 (unsealed)	129.4	27.9	2.8	3.1	-	-
Crushed rock rest layer - dump at E2	4.1	1.9	0.3	0.0	-	-
Crushed rock rest layer - screening in pit		-	-	-	-	-
Crushed rock rest layer - primary crushing in pit	42.0	16.8	4.4	0.2	401.5	105.4
Anchorage of liner - haul to E2 (sealed)	8.4	1.6	0.4	0.2	14.7	3.6
Anchorage of liner - haul to E2 (unsealed)	-	-	-	-	-	-
Crest anchor trench - haul to E2 (sealed)	8.4	1.6	0.4	0.2	14.7	3.6
Crest anchor trench - haul to E2 (unsealed)	-	-	-	-	-	-
E2 - Dozer	1,318.7	239.2	138.5	6.6	610.5	353.4
Wind Erosion - E2 (during construction)	280.8	140.4	21.1	3.9	280.8	42.1
Wind Erosion - E2 (after construction)	14.0	7.0	1.1	0.2	14.0	2.1
Truck movement - cement	33.7	6.5	0.3	0.8	8.2	0.4
Truck movement - aggregate	82.7	15.9	0.8	2.0	20.2	1.0
Truck movement - sand	317.1	60.9	2.9	7.6	77.7	3.8
Truck movement - shotcrete	129.4	24.8	1.2	3.1	31.7	1.5
Loading cement at rail siding	12.8	6.1	0.9	-	7.1	1.1
Aggregate transfer	32.7	15.9	0.9	-	18.7	1.0
Sand transfer	16.5	7.6	0.4	-	9.0	0.5
Cement transfer	3.3	1.1	0.2	-	1.3	0.2
Weigh hopper loading	20.1	10.0	0.6	-	11.8	0.7
Truck loading	378.6	101.2	5.7	-	119.1	6.7
De-dusted air loading cement and fly-ash	-	52.5	2.9	-	61.8	3.5

Table 3-1: Emissions estimates for Modification 4 (kg/y)

Activity		Annual	emissions		Worst co hour em	
	TSP	PM 10	PM2.5	Pb(TSP)	PM 10	PM2.5
Wind erosion (aggregate stock piles)	26.3	13.1	2.0	0.4	13.1	2.0
Wind erosion (whole CBP)	15.3	7.7	1.1	0.2	7.7	1.1
Waste rock - load in pit	41.9	19.8	3.0	0.2	-	-
Waste rock - haul to E3 (unsealed)	1,143.7	286.5	28.6	27.4	-	-
Waste rock - haul to E3 (sealed)	300.5	57.7	14.0	7.2	-	-
Waste rock - dump at E3	41.9	19.8	3.0	0.2	-	-
Filter sand - load at external site	4.9	2.3	0.4	-	-	-
Filter sand - haul to E3 (unsealed)	10.0	2.0	8.4	0.2	-	-
Filter sand - dump at E3	4.9	2.3	0.4	-	-	-
Crushed rock rest layer - load in pit	4.1	1.9	0.3	0.0	-	-
Crushed rock rest layer - haul to E3 (unsealed)	111.6	27.9	2.8	2.7	-	-
Waste rock - haul to E3 (sealed)	29.3	5.6	1.4	0.7	-	-
Crushed rock rest layer - dump at E3	4.1	1.9	0.3	0.0	-	-
Crushed rock rest layer - screening in pit	-	-	-	-	-	-
Crushed rock rest layer - primary crushing in pit	42.0	16.8	4.4	0.2	-	-
Toe and side anchorage of liner - haul to E3 (unsealed)	34.8	10.3	0.9	0.8	-	-
Crest anchor trench - haul to E3 (unsealed)	34.8	10.3	0.9	0.8	-	-
E3 - Dozer	1,098.9	199.3	115.4	5.5	-	-
Wind Erosion - E3 (during construction)	152.7	76.3	11.4	0.8	-	-
Wind Erosion - E3 (after construction)	7.6	3.8	0.6	0.0	-	-
Total	9,341	2,131	472	154	6,447	1,225

Note: *Annualised worst case 24-hour emission estimates are reflective of the emission quantity applied in the model for the estimation of peak 24-hour impacts (i.e. assuming short-term peak operations occur on a continuous basis). These quantities are not reflective of annual emission estimates.

3.1.1 Control measures

Waste rock handling

A control efficiency of 50% has been applied to the handling of waste rock emplaced at the embankments. Water is integral to the construction process whereby the material to be constructed is wetted to aid in compaction and strengthen the integrity of the final structure of the embankment. This will be facilitated by a spray system curing capping material placement. Therefore, in reality the material handling activities by their very nature will be wet resulting in minimal PM emissions.

Tailings storage facility emissions

Field testing of dust lift-off from the tailings storage facility (TSF) was completed on 9 November 2016. The purpose of the study was to undertake a field survey of wind erosion potential from exposed surface areas at the Rasp Mine, Broken Hill. The full report is provided in **APPENDIX G**.

The results of the testing indicate that observed levels of moisture at the TSF (shown in **Figure 3-1**) are adequate for operational dust control. For moist surfaces within the TSF, confined air burst chamber (CABC) testing indicated a 100% control efficiency, whilst the USEPA sieving method classified the material as being non-conducive to wind erosion.

Where present, dry, crusted areas were also observed to provide a high level of control relative to disturbed surfaces, equivalent to the proposed final waste rock cover for the TSF.

The above conclusion assumes that crusted tailings remain undisturbed. On that basis, the use of waste rock cover is considered a more resilient, and less readily disturbed surface for the long-term containment of TSF material after the point at which the TSF is no longer active.

The field testing can be used to inform future operational dust control measures for the TSF, as follows:

- The threshold wind velocity for TSF material has been determined empirically and can be used for future alerts / alarms when combined with local wind speed observations.
- Selective use of dust suppressant in TSF spray system will aid control of the TSF when used in the proposed TSF spray system, particularly at the end of the TSF's operational life.
- Alerts / alarms can be set up on existing instrumentation to inform the use of TSF spray system
- As an additional safeguard, alerts can be set both for critical PM concentrations and wind velocities recorded in proximity to the TSF surface.

Figure 3-1: Tailings dam (TSF2) at Rasp Mine, 9 November 2016

Emissions from the TSF have been estimated assuming that under normal operations, 5% of the total area of the TSF (~9 ha) would be dry, and therefore susceptible to wind erosion. Of this 9 ha, 90% would comprise dry tailings and 10% dry fines. To consider a worst-case scenario, TSF 'upset conditions' were also assessed. This model scenario, designed to simulate a long-term breakdown of the proposed TSF spray system alongside limited cover supplied by fresh wet tailings across the TSF, assumes that 25% of the TSF is dry. The same apportionments of dry areas and dry fines were adopted as per the normal operations scenario.

It is noted that the control efficiency of the TSF crusting has not been explicitly accounted for in either scenario. Rather, the ability for PM generation is based on invoking the threshold friction velocity (the minimum wind speed required to liberate PM) established through the empirical testing detailed in

Appendix E. The estimated lead emissions have been based on data provided by BHOP; that tailings comprise 0.31% lead. The project terrain during the construction phase of Modification 4 has been referenced in the modelling.

Pacific Environment

The annual emissions from the TSF, under both normal and upset conditions, are summarised in **Table 3-2**.

Scenario	TSP	PM 10	PM _{2.5}	Pb (TSP)
Normal conditions				
Dry area	1,562	781	117	4.8
Dry Fines	2,716	1,358	204	8.4
Upset conditions				
Dry area	7,812	3,906	586	24.2
Dry Fines	13,581	6,790	1,019	42.1

Table 3-2: Summary of wind erosion emissions from the TSF for normal and upset conditions (kg/yr)

Note: Annualised upset emission estimates are reflective of the emission quantity applied in the model for the estimation of peak 24-hour impacts (i.e. assuming short-term peak operations occur on a continuous basis). The impact of upset conditions has not been calculated on an annual basis, as any upset scenario would be, by definition, only short-term in nature.

It is noted that the annual wind erosion emissions during upset conditions that are presented in **Table 3-2** would never actually occur for more than a 24-hour period. Annual, rather than 24-hour, emissions have been provided for comparative purposes only.

Wind erosion post-TSF closure

A very high level of control is demonstrated through the field testing for the proposed waste rock capping of the TSF (>99% compared to uncontrolled tailings; refer **APPENDIX G**). It is thus anticipated that an assumption that there would there would be no change in lead deposition from normal operations post-TSF closure is conservative (see **Section 5.6**).

Dust suppression on haul roads

Dust suppressants work by either agglomerating the fine particles, binding the surface particles together, or increasing the density of the road surface material. They reduce the ability of the surface particles to be lifted and suspended by vehicle tyres, vehicle-induced air turbulence, or the ambient wind.

A significant portion of the haul roads at Rasp Mine are paved, with the only unpaved sections understood to be down to Kintore Pit and a small section at the rail load out facility. It is noted that the working tracks to be used for the TSF embankment construction are also considered unpaved.

The estimated haul road PM emissions have adopted an 80% control efficiency associated with the application of a chemical suppressant to unpaved roads. Consistent with the Preferred Project Report (PPR) for the Rasp mine (**Environ (2010)**), it is understood that paved roads are regularly watered and swept, and therefore a 90% control efficiency has been applied.

Table 3-3 evaluates the performance of a range of chemical dust suppressants under a range of operational and environmental conditions. The choice of an effective dust suppressant at Rasp Mine should take into consideration these findings, but should be made taking into account site-specific conditions (and preferably verified empirically).

		affic Volum rage Daily 1		Surface Material					Climate During Traffic					
Dust Suppressant	Light <100	Medium 100 to 250	Heavy >250(a)	Pla	sticity I	Index	(% F	assing	Fines 75µm, N	o. 200 :	Sieve)	Wet&/or Rainy	Damp to Dry	Dry ^(b)
				<3	3-8	>8	<5	5-10	10-20	20-30	>30			
Calcium Chloride	Good	Good	Fair	Poor	Fair	Good	Poor	Fair	Good	Fair	Poor ^(c)	Poor ^{(c),(d)}	Good	Poor
Magnesium Chloride	Good	Good	Fair	Poor	Fair	Good	Poor	Fair	Good	Fair	Poor ^(c)	Poor ^{(c),(d)}	Good	Fair
Petroleum	Fair	Fair	Fair	Good	Fair	Poor	Fair ^(e)	Fair	Fair ^(e)	Poor	Poor	Fair ^(c)	Good	Fair
Lignin	Good	Good	Fair	Poor	Fair	Good ^(e)	Poor	Fair	Good	Good	Fair ^{(c),(e)}	Poor ^(d)	Good	Good
Tall Oil	Good	Fair	Poor	Good	Fair	Poor	Poor	Fair	Good ^(e)	Fair ^(c)	Poor	Fair	Good	Good
Vegetable Oils	Fair	Poor	Poor	Fair	Fair	Fair	Poor	Fair	Fair	Poor	Poor	Poor	Fair	Fair
Electro- chemical	Good	Fair	Fair	Poor	Fair	Good	Poor	Fair	Good	Good	Good	Fair ^{(c),(d)}	Fair	Fair
Synthetic Polymers	Good	Fair	Poor	Good	Fair	Poor	Poor	Good	Good ^(e)	Poor	Poor	Fair	Good	Good
Clay additives ^(e)	Good	Fair	Poor	Good	Good	Fair	Good	Fair	Fair	Poor	Poor	Poor ^(c)	Fair	Good
Source: Bolan	der & Y	amada, 19	799			I			I			1		<u> </u>

Table 3-3: Dust Suppressant Product Selection Chart

Notes:

^{a)} May require higher or more frequent application rates, especially with high truck volumes;

^{b)} Greater than 20 days with less than 20% humidity;

c) May become slippery in wet weather;

 $^{\rm d)}$ $\,$ SS-1 or CSS-1 with only clean, open-graded aggregate;

e) Road mix for best results.

3.2 Characterising background air quality

As the Rasp Mine is operating, incremental PM contributions from the current operations are captured by the Rasp Mine air quality monitoring network.

Therefore to provide a more accurate understanding of the 'background' conditions (i.e. in the absence of mine activities), the current operations of Rasp Mine have been modelled using known quantities of materials handled and haul truck movements. The assumptions adopted in calculating PM emissions for this assessment have followed those used in **Environ (2010)**. A detailed list of assumptions are provided in **APPENDIX B**.

Background air quality has then been estimated referencing the ambient air quality monitoring data for 2016, minus Rasp Mine's contribution for during the same (modelled) year.

3.3 Model selection

For consistency with the original environmental assessment (EA), and historical modelling and assessment (Pacific Environment 2011; 2013; 2014; 2015a; 2015b), the current assessment has used the US-EPA regulatory model, AERMOD. A detailed account of the model selection and modelling methodology is presented in the air assessment (Environ, 2010).

3.4 Sensitive receptors

The NSW EPA definition of sensitive receptors (EPA, 2016) is:

"A location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area."

In total, 49 sensitive receptors have been included in this study. There are 42 from the original study **(Environ, 2010)** and additional seven receptors of which include the bowling green and six playgrounds. Their location is shown in **Figure 1-1** and summary tables that describes each receptor in **APPENDIX D**.

Previous work completed as part of the most recent Health Risk Assessment (HRA) for the Rasp Mine *Health Risk Assessment Rasp Mine Broken Hill* (Pacific Environment, 2015b) specifically considered two sensitive receptors (R8 and R27). The evaluation of impacts at these two (effectively fenceline) receptor locations provides a conservatively high representation of impacts within the Broken Hill community. It may be reasonably assumed that potential mine-related impacts will be reduced at other locations, given that they will be further removed from the mine's operations.

4 EXISTING ENVIRONMENT

4.1 Dispersion Meteorology

Air pollutant concentrations are strongly influenced by meteorological conditions, primarily in the form of prevailing wind directions and interactions with diurnal flow regimes. Wind speed, wind direction, temperature and relative humidity all affect the dispersion and transport of pollution, and are basic input requirements for dispersion modelling. The local meteorology for Broken Hill has been described in detail in **Environ (2010)**.

The annual wind roses for 2008 and 2009 were reviewed as part of **Environ (2010)** and have been reproduced below in **Figure 4-1**.

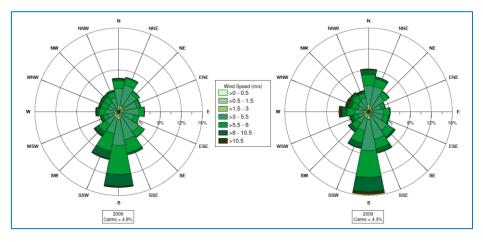
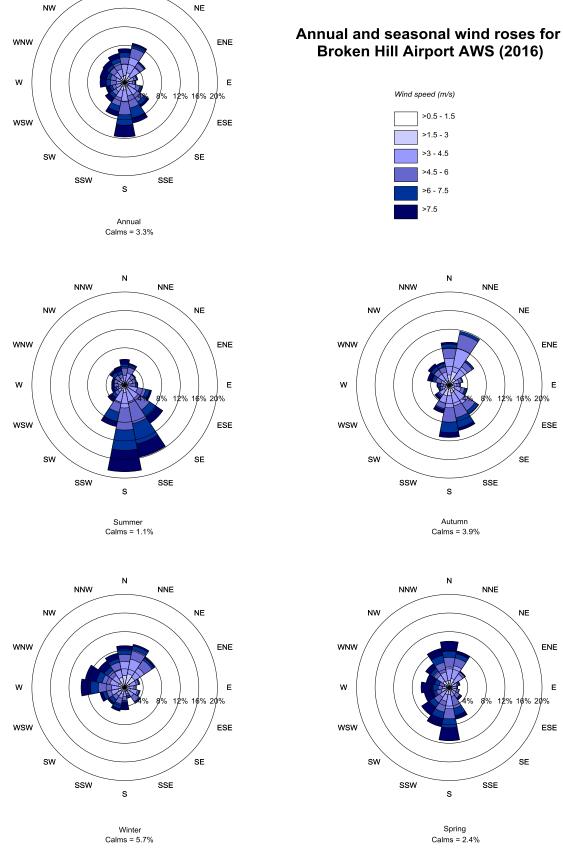



Figure 4-1: 2008 and 2009 annual wind roses for Broken Hill (source: Environ, 2010)

As some time has elapsed since the original EA a more recent meteorological dataset has been compiled for the year 2016 and has been used in the dispersion modelling. The annual and seasonal wind roses for 2016 are shown in **Figure 4-2**.

Across all three years, the annual wind roses display a very similar wind distribution pattern, with the highest frequency of winds originating from the south. In the 2016 dataset the frequency of winds is more evenly spread across the south, south-southeast and south-southwest.

Ν

NNE

NNW

4.2 Local air quality

In 2015, Health Risk Assessment Rasp Mine Broken Hill (**Pacific Environment, 2015b**) provided an extensive review of the monitoring data collected on behalf of BHOP between 2008 and 2014.

The following provides a description of the ambient air quality monitoring that has been conducted at the site. All of these data were subsequently reviewed as part of **Pacific Environment (2015b)**:

- Three High volume Air Samplers (HVAS) measuring Total Suspended Particulate (TSP) / particulate matter less than 10µm in aerodynamic diameter (PM₁₀) and lead (Pb) concentrations at three locations on site;
- Two Tapered Element Oscillating Microbalances (TEOMs) measuring PM₁₀ at two locations on site; and
- Seven Dust Deposition Gauges (DDGs) measuring dust deposition and % deposited Pb at seven locations on site.

These data have been assessed to examine temporal trends between 2008 and 2014 (subject to data availability). The mean, maximum, minimum, median, standard deviation, 25th and 75th percentile statistics were then determined for each financial year (FY) period.

The current assessment has drawn on the extensive database of air quality monitoring reviewed in **Pacific Environment (2015b)** and has incorporated more recent data up to and including December 2016 to establish background air quality associated with the currently operating Rasp Mine and the contributions from other sources in the Broken Hill area (for example, wood fire smoke and agriculture). Note that only six months of monitoring data is available for FY17 and therefore the results presented for FY17 are not representative of whole year of data. The data show an ongoing trend of improvement in the local air quality across all parameters measured (TSP, PM₁₀, lead and deposited dust).

Background data has been used that corresponds with the year of modelling, 2016. Given that there are several locations where PM_{10} , lead and deposited dust have been measured, a representative background dataset for each receptor has been based on the location of the sensitive receptor. Information on the allocated monitor are provided in **APPENDIX D**.

The following provides a summary of the adopted background values used for this assessment:

- PM₁₀ annual average concentration = (TEOM 1 = 13.0 µg/m³; TEOM 2 = 13.1 µg/m³)
- > PM₁₀ 24-hour concentration = daily varying from either TEOM 1 or TEOM 2
- PM_{2.5} annual average concentration = (TEOM 1 = 5.3 μg/m³; TEOM 2 = 7.1 μg/m³)¹
- > PM_{2.5} 24-hour concentration = daily varying as ratio from either TEOM 1 or TEOM 2
- SP annual average concentration = 35.8 µg/m³
- Annual monthly average deposited dust = (0.4 g/m²/month to 2.6 g/m²/month)
- > Annual average lead (TSP) concentration = (HVAS = $0.23 \mu g/m^3$)
- Annual lead deposition (TSP fraction)= 0 μg/m³

¹ There were no PM_{2.5} monitoring data available to establish background concentrations. Therefore a PM_{2.5}/PM₁₀ ratio of 0.41 has been adopted. This value was based on the PM_{2.5}/PM₁₀ ratio for the OEH monitoring station at Wagga Wagga for 2016.

4.2.1 Background lead deposition

From the above, it is noted that the background annual lead deposition rates adopted for this assessment are 0 g/m²/year. This is since the model predictions corresponding to 2016 operations indicated that mine-only activities more than accounted for the observed lead deposition rates (i.e. the model currently over-predicts Pb deposition with model results higher than monitored results at the majority of monitoring locations). A summary of the Pb (in TSP) emission estimates and adopted %Pb composition is provided in **APPENDIX B**.

The model predictions for the other air quality metrics were below their equivalent monitored concentrations. This is not to say that the model has under-predicted the remaining air quality metrics, but rather the model over-prediction for Pb deposition demonstrates that the emission inventory inputs regarding percentage lead within the site materials are considered to be conservatively high (see **APPENDIX B**).

Such a model over-prediction is not unexpected given the desire to adopt conservatively high assumptions within dispersion modelling exercises. To be explicit, this does not suggest that there are no other potential sources of fugitive lead in Broken Hill outside of the boundary of CML7, but rather that this assessment demonstrates a conservative approach in the evaluation of potential lead impacts. Other sources of lead deposition in the Broken Hill area include industrial processes within Broken Hill as well as natural / legacy dust sources from soils with elevated Pb levels that occur around the vicinity of the ore body.

On the basis of the above, to account for this model artefact no accounting of background Pb deposition is required when reconciling model predictions with observed levels of Pb deposition.

5 AIR QUALITY IMPACT ASSESSMENT

Incremental Project-related concentrations and deposition rates occurring due to operation of the CBP, combined with the construction of E2 and E3 embankments, were modelled (termed 'Incremental Mod 4 + CBP').

Model predictions for the TSF during upset operating conditions have only been provided for the short term averaging periods (i.e. maximum 24-hour PM₁₀ and PM_{2.5} concentrations). This is because the annual averaging periods are not relevant as the management of such upset conditions would be control emission within a short time frame.

It is both instructive and appropriate to model Modification 4 in isolation (i.e. without the inclusion of other emission sources on site). This is since any PM and Pb emissions associated with current operations at the Rasp Mine would be captured within the air quality monitoring data that currently takes place. A summary of the results for the current operations compared with those predicted for the PPR **(Environ, 2010)** are provided in **APPENDIX C**.

Model results are expressed as the maximum predicted concentration for each averaging period at the sensitive receptors over a twelve month period (calendar year 2016).

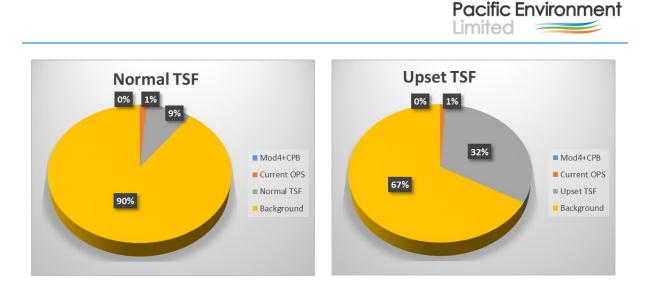
5.1 24-Hour and Annual Average PM₁₀

The maximum incremental 24-hour and annual average PM₁₀ concentrations predicted to occur at nearby receptor locations due to Modification 4 for the modelled year 2016 are summarised in **Table 5-1**. The corresponding contour plots are included in **Appendix D**. It should be noted that these plots do not represent the dispersion pattern on any individual day. Rather, they illustrate an ensemble of the maximum concentrations simulated to be possible at each gridded receptor point across the modelling domain given the range of meteorological conditions occurring over the period modelled.

The contour plots for the maximum incremental 24-hour and annual average concentrations show that the PM₁₀ concentrations are for the most part isolated to within the close vicinity to the CBP, E2, E3 and the associated haul roads.

The contribution of Modification 4 to the annual average impact assessment criterion $(25 \ \mu g/m^3)^2$ is approximately 1% (0.19 $\mu g/m^3$), and adds an additional 3% (0.66 $\mu g/m^3$) to the cumulative total when considered in conjunction with current operations. These are considered negligible contributions to the PM exposure in the Broken Hill area.

The receptor that is predicted to experience the maximum incremental 24-hour average contribution is R28, located to the immediate west of Embankment E2. This receptor is located at a heritage building located within CML7. The maximum 24-hour average increment at R28 is predicted to be $3.2 \mu g/m^3$, approximately 6% of the EPA impact assessment criterion of 50 $\mu g/m^3$. It is noted that R28 is a mine owned building that has not been occupied in over 20 years.


Also included are the cumulative results, using on-site monitoring data for a Level 2 contemporaneous assessment in accordance with the Approved Methods (EPA, 2016).

As Rasp Mine currently operate two TEOMs within the vicinity of the sensitive receptors assessed as part of this study, both TEOM data sets have been used where those receptors located to the north of the mine would most likely have a background (all sources) most similar to the PM₁₀ measurements at TEOM 2 (see **Figure 1-1**). Similarly, for those receptors located to the south of Rasp Mine the TEOM 1 dataset have been referenced.

All cumulative results are predicted to be below the relevant impact assessment criterion. The exception to this is under the upset scenario, at receptor R27, which is shown in bold within **Table 5-1**. Receptor R27, located to the immediate southwest of R28 (see **Figure 1-1**), the predicted increment (52 µg/m³) is just above the NSW impact assessment criterion of 50 µg/m³. This exceedance is predicted to occur on one day during the modelling period (14 January 2016), under specific meteorological conditions coinciding with an upset event. Further, and for context in the evaluation of this predicted exceedance under upset scenario, it is noted that the Ambient Air-NEPM (**NEPC, 1998a**) allows for five exceedances per year.

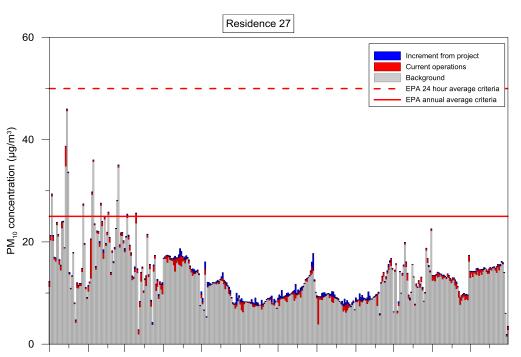
On the day of this predicted 'upset scenario' exceedance, 11 of the 24 hours recorded wind speeds in excess of 10 m/s, resulting in elevated emissions from the TSF due to the threshold friction velocity required for TSF dust generation being exceeded. Source apportionment plots have been prepared for the 24-hour contributions during normal and upset TSF operating conditions for the day in question and are shown in **Figure 5-1**. During upset, the contribution of TSF emissions at Receptor R27 is almost triple that predicted for worst-case conditions under normal operations, and significantly greater than emission contributions from the rest of the mine and Modification 4 activities.

² The criterion in Rasp Mine's current Project Approval is 30 µg/m³. See Section 2 for further detail.

Figure 5-1: Source contributions at R27 for maximum 24-hour average PM₁₀ predictions

It is considered that this exceedance event (upset conditions coinciding with elevated background PM₁₀ concentrations) is unlikely to occur in reality, especially when the operational dust management activities documented in **Section 6** are implemented.

It is noted that the maximum 24-hour average results for almost all receptors is the same for normal and upset TSF operations. This has occurred because a contemporaneous assessment level 2 methodology was adopted, whereby the emissions, meteorology and background daily PM contributions align. Therefore at some receptors the maximum contribution from the TSF would not necessarily occur on the same day as the maximum contribution from Modification 4, the current operations and background. Generally speaking, the maximum 24-hour average prediction was either 36 µg/m³ or 46 µg/m³. Review of the time series data for the receptors indicates that these reported maxima were heavily influenced by the contribution of the background rather than Rasp Mine related sources.


A time series plot showing the 24-hour average PM_{10} contribution from Modification 4 (and operation of the CBP) in combination with the adopted background has been prepared R27 and is shown in **Figure** 5-2.

		Annual average		Maximum 24-hour				
Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)		
Criterion	n/a	25	25	n/a	50	50		
R1	0.03	13	13	1.4	36	36		
R2	0.04	13	13	1.8	36	36		
R3	0.05	13	13	1.9	36	36		
R4	0.03	13	13	1.0	36	36		
R5	0.02	13	13	0.8	36	36		
R6	0.02	13	13	1.2	36	36		
R7	0.01	13	13	0.5	46	46		
R8	0.02	13	13	0.7	46	46		
R9	0.02	13	13	1.2	46	46		
R10	0.02	13	13	0.5	46	46		
R11	0.01	13	13	0.6	36	36		

Table 5-1: Predicted annual average and maximum 24-hour PM₁₀ concentrations (µg/m³)

Pacific Environment Limited

		Annual average		Maximum 24-hou	r	
Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)
Criterion	n/a	25	25	n/a	50	50
R12	0.01	13	13	0.6	36	36
R13	0.01	13	13	0.6	36	36
R14	0.01	13	13	0.3	46	46
R15	<0.01	13	13	0.3	46	46
R16	0.01	13	13	0.3	46	46
R17	0.01	13	13	0.4	46	46
R18	0.01	13	13	0.4	36	36
R19	<0.01	13	13	0.2	46	46
R20	<0.01	13	13	0.4	46	46
R21	0.03	13	13	1.8	36	36
R22	0.03	13	13	1.3	36	36
R23	0.02	13	13	1.0	36	36
R24	0.02	13	13	0.7	36	36
R25	0.02	13	13	0.8	36	36
R26	0.03	13	13	0.6	36	36
R27	0.14	13	14	3.1	46	52
R28	0.19	13	13	3.2	46	47
R29	0.06	13	13	1.4	46	46
R30	0.11	13	13	2.3	46	46
R31	0.03	13	13	1.7	46	46
R32	0.03	13	13	0.8	46	46
R33	0.04	13	13	1.9	46	46
R34	0.03	13	13	0.8	46	46
R35	0.02	13	13	1.0	46	46
R36	0.02	13	13	0.7	46	46
R37	0.02	13	13	0.6	46	46
R38	0.01	13	13	0.7	46	46
R39	0.01	13	13	0.7	46	46
R40	0.02	13	13	0.7	46	46
R41	0.02	13	13	0.7	46	46
R42	0.03	13	13	0.6	46	46
R43	0.06	13	13	3.2	46	46
R44	0.01	13	13	0.6	36	36
R45	0.01	13	13	0.6	36	36
R46	0.01	13	13	0.3	36	36
R47	0.01	13	13	0.5	46	46
R48	0.01	13	13	0.4	46	46
R49	<0.01	13	13	0.1	46	46

imited

Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16

The model predictions for PM₁₀ during the 2016 operations are provided in **APPENDIX C**. These results have been compared to those that were originally predicted for the PPR **(Environ, 2010)**. For PM₁₀, the annual predictions are lower at all receptors. This result is expected as the 2016 operations did not operate at 100% capacity, while the PPR modelling assumes an emission inventory based on the mine operating at its approved capacity.

In general, the maximum 24-hour average predictions are also below the PPR predicted increments. However there are several receptors where the predicted increment is greater than the PPR predictions (e.g. R27, R28 and R30). These changes are anticipated to be as a result of different meteorological files being used, where the 2016 current operations modelling adopted calendar year 2016 observations, while the PPR adopted 2008/2009 and therefore the 24-hour predictions will not always align with the annual results.

Various other factors should be taken into consideration including the change in source configuration, where the main vent shaft has been relocated and there has been the addition of Vent Shaft No. 6. The 2016 current operations modelling also references site-specific data (e.g. empirically derived control factors and materials samples) in derivation of the emission inventory.

5.2 24-Hour and Annual Average PM_{2.5}

The maximum incremental 24-hour and annual average PM_{2.5} concentrations predicted to occur at nearby receptor locations due to Modification 4 for the modelled year 2016 are summarised in **Table 5-2**. The corresponding contour plots are included in **APPENDIX F**. As noted above, these plots do not represent the dispersion pattern on any individual day. Rather, they illustrate an ensemble of the maximum concentrations simulated to be possible at each gridded receptor point across the modelling domain given the range of meteorological conditions occurring over the period modelled.

The contour plots for the maximum incremental 24-hour and annual average concentrations show that the PM_{2.5} concentrations are for the most part isolated to within close vicinity to the CBP, Embankment E2 and the associated haul roads.

The contribution of Modification 4 (combined with operation of the proposed CBP) to the annual average criterion (8 μ g/m³) is approximately 1%. The receptor that is predicted to experience the maximum incremental 24-hour average contribution is R27, located to the immediate west of Embankment E2. The maximum 24-hour average increment at R27 is predicted to be 1.6 μ g/m³, or 6% of the NSW impact assessment criterion of 25 μ g/m³. These are considered negligible contributions to the PM exposure in the Broken Hill area.

No site-specific $PM_{2.5}$ monitoring data is available for the study area. Therefore, the assessment for this pollutant has adopted the approach described in **Section 4.2**, where a $PM_{2.5}/PM_{10}$ ratio has been applied to the available on-site data.

All results are below the relevant impact assessment criterion.

		Annual average		Maximum 24-hour				
Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)		
Criterion	n/a	8	8	n/a	25	25		
R1	0.005	5	5	0.2	15	15		
R2	0.006	5	5	0.2	15	15		
R3	0.006	5	5	0.2	15	15		
R4	0.004	5	5	0.1	15	15		
R5	0.003	5	5	0.1	15	15		
R6	0.003	5	5	0.3	15	15		
R7	0.001	7	7	0.1	19	19		
R8	0.003	7	7	0.1	19	19		
R9	0.003	7	7	0.2	19	19		
R10	0.003	7	7	0.1	19	19		
R11	0.002	5	5	0.1	15	15		
R12	0.002	5	5	0.1	15	15		
R13	0.002	5	5	0.1	15	15		
R14	0.002	7	7	0.1	19	19		
R15	0.001	7	7	0.2	19	19		
R16	0.002	7	7	0.1	19	19		
R17	0.002	7	7	0.2	19	19		
R18	0.001	5	5	0.1	15	15		
R19	0.001	7	7	0.1	19	19		
R20	0.001	7	7	0.1	19	19		
R21	0.006	5	5	0.2	15	15		
R22	0.006	5	5	0.2	15	15		
R23	0.007	5	5	0.2	15	15		
R24	0.008	5	5	0.2	15	15		

Table 5-2: Predicted incremental annual average and maximum 24-hour PM_{2.5} concentrations (µg/m³)

		Annual average		Maximum 24-hour				
Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)		
Criterion	n/a	8	8	n/a	25	25		
R25	0.004	5	5	0.1	15	15		
R26	0.009	5	5	0.2	15	15		
R27	0.057	7	7	1.6	19	19		
R28	0.082	7	7	1.5	19	19		
R29	0.024	7	7	0.6	19	19		
R30	0.048	7	7	1.1	19	19		
R31	0.012	7	7	0.9	19	19		
R32	0.013	7	7	0.4	19	19		
R33	0.018	7	7	0.8	19	19		
R34	0.004	7	7	0.2	19	19		
R35	0.004	7	7	0.2	19	19		
R36	0.005	7	7	0.2	19	19		
R37	0.006	7	7	0.2	19	19		
R38	0.001	7	7	0.1	19	19		
R39	0.001	7	7	0.1	19	19		
R40	0.003	7	7	0.2	19	19		
R41	0.004	7	7	0.2	19	19		
R42	0.004	7	7	0.1	19	19		
R43	0.028	7	7	1.6	19	19		
R44	0.001	5	5	0.1	15	15		
R45	0.002	5	5	0.1	15	15		
R46	0.001	5	5	0.1	15	15		
R47	0.003	7	7	0.1	19	19		
R48	0.002	7	7	0.1	19	19		
R49	0.001	7	7	0.0	19	19		

As with the PM₁₀ predictions, it is noted that the maximum 24-hour average PM_{2.5} results are the same for normal and upset TSF operations. This has occurred because a contemporaneous assessment level 2 methodology was adopted, whereby the emissions, meteorology and background daily PM contributions align. Therefore at some receptors the maximum contribution from the TSF would not necessarily occur on the same day as the maximum contribution from Modification 4, the current operations and background. Generally speaking, the maximum 24-hour average prediction was either 15 µg/m³ or 19 µg/m³. Review of the time series data for the receptors indicates that these reported maxima were heavily influenced by the contribution of the background rather than Rasp Mine related sources.

The model predictions for PM_{2.5} during the 2016 operations are provided in **APPENDIX C**. These results have been compared to those that were originally predicted for the PPR (Environ, 2010). For PM_{2.5}, the annual predictions are lower at all receptors. In general, the maximum 24-hour average predictions are also below the PPR predicted increments. However there are several receptors where the predicted increment is above the PPR predictions (e.g. R34, R41 and R42). An explanation as to why this may occur is provided in Section **5.1**.

5.3 Annual average TSP

The incremental and cumulative annual average TSP concentrations predicted to occur at nearby receptor locations due to Modification 4 (and operation of the proposed CBP) for the modelled year 2016 are summarised in **Table 5-3**. The corresponding contour plots are included in **APPENDIX F**.

The contour plots for the incremental annual average concentrations show that, consistent with the smaller PM size fraction predictions, the TSP concentrations are for the most part isolated to within close vicinity to the CBP, Embankments E2, E3 and the associated haul roads.

At all receptors, the predicted annual average TSP concentrations are well below the NSW impact assessment criterion of 90 μ g/m³.

The contribution of Modification 4 to the annual average EPA impact assessment criterion (90 μ g/m³) is highest at R28 at 0.6% (increment 0.56 μ g/m³) and 1.2% (when current operations are considered). These are considered negligible contributions to the PM exposure in the Broken Hill area.

The model predictions for TSP during the 2016 operations are provided in **APPENDIX C**. These results have been compared to those that were originally predicted for the PPR **(Environ, 2010)**. For TSP, the annual predictions are lower at all receptors. An explanation as to why this may occur is provided in **Section 5.1**.

Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)
Criterion	n/a	90	Criterion	n/a	90
R1	0.06	36	R26	0.06	36
R2	0.08	36	R27	0.32	36
R3	0.12	36	R28	0.56	36
R4	0.07	36	R29	0.13	36
R5	0.04	36	R30	0.30	36
R6	0.03	36	R31	0.06	36
R7	0.01	36	R32	0.07	36
R8	0.03	36	R33	0.07	36
R9	0.03	36	R34	0.05	36
R10	0.03	36	R35	0.04	36
R11	0.02	36	R36	0.04	36
R12	0.02	36	R37	0.03	36
R13	0.02	36	R38	0.01	36
R14	0.02	36	R39	0.01	36
R15	0.01	36	R40	0.04	36
R16	0.01	36	R41	0.05	36
R17	0.01	36	R42	0.06	36
R18	0.01	36	R43	0.14	36
R19	0.01	36	R44	0.01	36
R20	0.01	36	R45	0.02	36
R21	0.06	36	R46	0.01	36

Table 5-3: Predicted incremental and cumulative annual average TSP concentrations (µg/m³)

Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)
Criterion	n/a	90	Criterion	n/a	90
R22	0.05	36	R47	0.02	36
R23	0.05	36	R48	0.01	36
R24	0.05	36	R49	0.01	36
R25	0.04	36			

Limited

5.4 Monthly average deposited dust

The incremental and cumulative monthly average dust deposition levels predicted to occur at nearby receptor locations due to Modification 4 for the modelled year 2016 are summarised in **Table 5-4**. The corresponding contour plots are included in **APPENDIX F**.

The contour plots for the incremental average monthly dust deposition show that the deposited dust is anticipated to be for the most part isolated to within close vicinity to the CBP, E2, E3 and the associated haul roads.

At all receptors, the predicted dust deposition levels are well below both the incremental $(2 \text{ g/m}^2/\text{month})$ and cumulative $(4 \text{ g/m}^2/\text{month})$ impact assessment criteria.

The contribution of Modification 4 to the monthly average EPA impact assessment criterion (4 g/m²/month) at the most impacted receptor (R28) is 8% (0.156 g/m²/month), or 17% (0.33 g/m²/month) when current mining operations are included. This is considered a negligible increased contribution to the particulate matter exposure in the Broken Hill area. When considered cumulatively (i.e. when existing dust deposition levels are considered) the predicted dust deposition levels would be a maximum of 2.8 g/m²/month at R27, R28 and R30. This equates to 71% of the cumulative criterion of 4 g/m²/month.

The model predictions for dust deposition during the 2016 operations are provided in APPENDIX C. These results have been compared to those that were originally predicted for the PPR (Environ, 2010). The predictions are lower at all receptors. An explanation as to why this may occur is provided in **Section 5.1**.

Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)
Criterion	2	4	Criterion	2	4
R1	0.019	1.6	R26	0.017	1.6
R2	0.023	1.6	R27	0.091	2.8
R3	0.036	1.6	R28	0.156	2.8
R4	0.021	1.6	R29	0.040	2.7
R5	0.009	1.6	R30	0.095	2.8
R6	0.007	1.6	R31	0.017	2.7

Table 5-4: Predicted incremental and cumulative monthly average deposited dust (g/m²/month)

				Limited	
1					
R7	0.004	0.8	R32	0.022	2.7
R8	0.009	0.8	R33	0.022	1.2
R9	0.009	0.4	R34	0.018	0.4
R10	0.010	0.4	R35	0.014	0.4
R11	0.006	1.6	R36	0.011	0.4
R12	0.005	1.0	R37	0.010	0.4
R13	0.004	1.0	R38	0.003	0.8
R14	0.005	0.4	R39	0.004	0.8
R15	0.002	0.4	R40	0.013	0.4
R16	0.003	0.4	R41	0.016	0.4
R17	0.004	0.4	R42	0.020	0.4
R18	0.003	1.0	R43	0.041	2.7
R19	0.002	0.4	R44	0.002	1.0
R20	0.002	0.4	R45	0.006	1.0
R21	0.017	1.6	R46	0.002	1.0
R22	0.016	1.6	R47	0.007	0.4
R23	0.015	1.6	R48	0.004	0.4
R24	0.015	1.6	R49	0.002	0.4
R25	0.011	1.6			

5.5 Annual average lead concentration

The incremental and cumulative annual average lead concentrations predicted to occur at nearby receptor locations due to Modification 4 for the modelled year 2016 are summarised in **Table 5-5.** The corresponding contour plots are included in **APPENDIX F**.

At all receptors, the predicted annual average lead concentrations are predicted to be well below the NSW impact assessment criterion of $0.5 \,\mu$ g/m³.

The model predictions for lead concentration during the 2016 operations are provided in **APPENDIX C**. These results have been compared to those that were originally predicted for the PPR (Environ, 2010). The annual predictions are lower at all receptors. An explanation as to why this may occur is provided in **Section 5.1**.

Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)
Criterion	n/a	0.5	Criterion	n/a	0.5
R1	0.0012	0.23	R26	0.0008	0.23
R2	0.0018	0.23	R27	0.0029	0.23
R3	0.0028	0.23	R28	0.0047	0.24
R4	0.0015	0.23	R29	0.0014	0.23

Table 5-5: Predicted incremental and cumulative annual average lead concentrations (µg/m³)

R5	0.0008	0.23	R30	0.0027	0.23
R6	0.0007	0.23	R31	0.0007	0.23
R7	0.0003	0.23	R32	0.0008	0.23
R8	0.0007	0.23	R33	0.0008	0.23
R9	0.0006	0.23	R34	0.0009	0.23
R10	0.0006	0.23	R35	0.0007	0.23
R11	0.0005	0.23	R36	0.0006	0.23
R12	0.0004	0.23	R37	0.0006	0.23
R13	0.0003	0.23	R38	0.0003	0.23
R14	0.0003	0.23	R39	0.0003	0.23
R15	0.0001	0.23	R40	0.0008	0.23
R16	0.0001	0.23	R41	0.0009	0.23
R17	0.0003	0.23	R42	0.0011	0.23
R18	0.0002	0.23	R43	0.0014	0.23
R19	0.0001	0.23	R44	0.0002	0.23
R20	0.0001	0.23	R45	0.0004	0.23
R21	0.0011	0.23	R46	0.0002	0.23
R22	0.0010	0.23	R47	0.0004	0.23
R23	0.0009	0.23	R48	0.0002	0.23
R24	0.0008	0.23	R49	0.0001	0.23
R25	0.0006	0.23			

5.6 Annual average lead deposition

The incremental and cumulative annual average lead deposition rates predicted to occur at nearby receptor locations due to Modification 4 for the modelled year 2016 are relevant to Human Health Risk Assessment, and are summarised in **Table 5-6**. The corresponding contour plots are included in **APPENDIX F**.

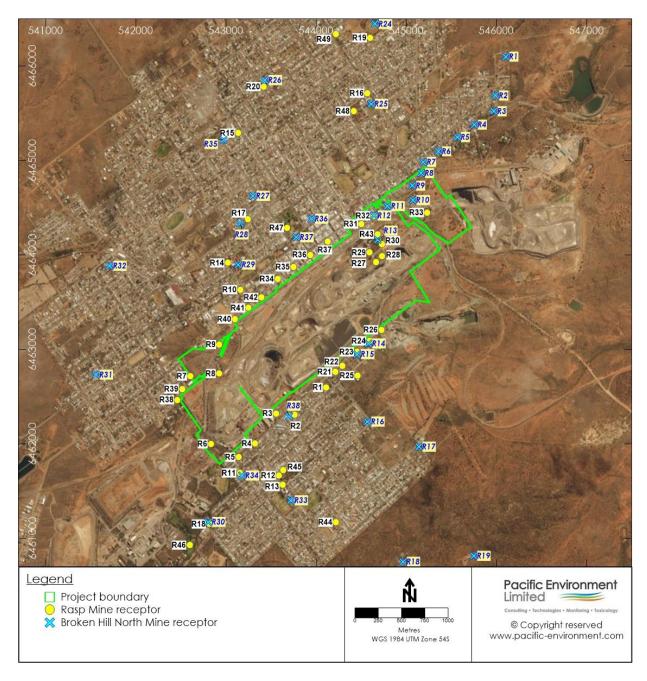
There is no lead deposition impact assessment criterion referenced by the NSW EPA.

The model predictions for lead deposition during the 2016 operations are provided in **APPENDIX C**. These results have been compared to those that were originally predicted for the PPR (Environ, 2010). The annual predictions are lower at all receptors. An explanation as to why this may occur is provided in Section **5.1**.

Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)
Criterion	n/a	n/a	n/a	Criterion	n/a	n/a	n/a
R1	0.005	0.019	0.019	R26	0.003	0.034	0.035
R2	0.006	0.023	0.023	R27	0.010	0.050	0.065

Table 5-6: Predicted incremental and cumulative annual average lead deposition (g/m²/year)

Receptor ID	· (Mod 4 + ·		Cumulative (Increment + TSF upset + background)	Receptor ID	Incremental (Mod 4 + CBP)	Cumulative (Increment + TSF normal + background)	Cumulative (Increment + TSF upset + background)
Criterion	n/a	n/a	n/a	Criterion	n/a	n/a	n/a
R3	0.010	0.035	0.035	R28	0.016	0.047	0.057
R4	0.005	0.021	0.021	R29	0.005	0.032	0.036
R5	0.002	0.014	0.014	R30	0.010	0.031	0.037
R6	0.002	0.013	0.013	R31	0.002	0.014	0.015
R7	0.001	0.005	0.005	R32	0.003	0.014	0.015
R8	0.002	0.013	0.013	R33	0.003	0.014	0.016
R9	0.002	0.010	0.010	R34	0.004	0.015	0.015
R10	0.002	0.010	0.010	R35	0.003	0.013	0.013
R11	0.002	0.008	0.008	R36	0.002	0.012	0.012
R12	0.001	0.007	0.007	R37	0.002	0.012	0.012
R13	0.001	0.005	0.005	R38	0.001	0.004	0.004
R14	0.001	0.005	0.005	R39	0.001	0.004	0.004
R15	<0.001	0.002	0.002	R40	0.003	0.013	0.013
R16	0.001	0.003	0.003	R41	0.004	0.015	0.015
R17	0.001	0.005	0.005	R42	0.004	0.017	0.017
R18	0.001	0.004	0.004	R43	0.005	0.021	0.024
R19	<0.001	0.002	0.002	R44	0.001	0.003	0.003
R20	<0.001	0.002	0.002	R45	0.001	0.007	0.007
R21	0.004	0.019	0.019	R46	<0.001	0.003	0.003
R22	0.004	0.019	0.019	R47	0.002	0.008	0.008
R23	0.003	0.021	0.022	R48	0.001	0.003	0.003
R24	0.003	0.025	0.026	R49	<0.001	0.002	0.002
R25	0.002	0.013	0.013				


5.7 Cumulative impacts associated with the Broken Hill North Mine

In February 2017 the air quality assessment (**Pacific Environment**, **2017**) for the Broken Hill North Mine Recommencement Project (Broken Hill North Mine) was released for public exhibition by the NSW Department of Planning. It is highlighted that to avoid any perceived conflicts of interest, the authors of this current report were deliberately not informed of details of the Broken Hill North Mine proposal. The Broken Hill North Mine is located to the north east of Rasp Mine and therefore PM emissions from this source would have the potential to result in cumulative impacts when combined with predictions associated with the Rasp Mine.

While the Broken Hill North Mine Recommencement Project has not yet been approved, it is important to acknowledge any potential changes in local air quality as a result of Broken Hill North Mine's potential future operations. **Pacific Environment (2017)** has provided tabulated results for the short term and long term air quality metrics, including PM₁₀, PM_{2.5}, TSP, dust deposition and lead concentration. No data were presented for lead deposition and therefore this cumulative assessment are limited to these metrics.

The receptor locations adopted within **Pacific Environment (2017)** have been compared with those that have been adopted for this assessment.

There are eight receptors that align with those used in Broken Hill North Mine air quality assessment such that impacts can be evaluated cumulatively. These receptors comprise R2, R11, R17, R18 R23, R24, R32 and R43 from the Rasp Mine receptor list and are shown in **Figure 5-3**.

Figure 5-3: Rasp Mine receptors that align with those used in Broken Hill North Mine air quality assessment

At each of these receptors, the available maximum predictions for Broken Hill North Mine have been combined with the model results that have been compiled for this assessment. The annual average and maximum 24-hour predictions for PM₁₀ and PM_{2.5} are presented in **Table 5-7**. The annual results for TSP, dust deposition and lead concentration are presented in **Table 5-8**.

The tabulated results presented in **Pacific Environment (2017)** are limited to one decimal place consequently results for some residences have been reported as 0.0µg/m³. It has therefore been

assumed that in these instances where the model prediction is $0.0\mu g/m^3$ that the contribution of Broken Hill North Mine is negligible.

In the case of lead concentration predictions the results have only been provided for the most impacted of the discrete receptors assessed (39 in total). In the absence of a full dataset, a highly conservative approach has therefore been adopted by assuming a uniform 0.006µg/m³ impact from the Broken Hill North Mine across all receptors.

Table 5-7: Predicted cumulative (in combination with Broken Hill North Mine) annual average and maximum 24-hour PM10 and PM2.5 concentrations (µg/m³)

Receptor		Annue	al average			Maxi	mum 24-hour	
ID (Broken Hill North Mine receptor ID)	Incremental (Mod 4 + CBP)	Broken Hill North Mine	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)	Incremental (Mod 4 + CBP)	Broken Hill North Mine	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)
PM 10								
Criterion	n/a	n/a	25	25	n/a	n/a	50	50
R2 (R38)	0.04	0.1	13	13	3.2	1.8	38	38
R11 (R34)	0.01	0.1	13	13	2.0	0.6	37	37
R17 (R28	0.01	0.0	13	13	1.1	0.4	46	46
R18 (R30)	0.01	0.1	13	13	1.4	0.4	37	37
R23 (R15)	0.02	0.1	13	13	4.5	1.0	37	37
R24 (R14)	0.02	0.1	13	13	5.1	0.7	37	37
R32 (R12)	0.03	0.1	13	13	1.5	0.8	47	47
R43 (R13)	0.06	0.1	13	13	2.9	3.2	49	49
PM2.5		•					•	
Criterion	n/a	n/a	8	8	n/a	n/a	25	25
R2 (R38)	0.006	0.1	5	5	0.2	4.7	19	19
R11 (R34)	0.002	0.1	5	5	0.1	2.9	18	18
R17 (R28	0.002	0.0	5	5	0.2	0.9	20	20
R18 (R30)	0.001	0.1	5	5	0.1	2.1	17	17
R23 (R15)	0.007	0.1	5	5	0.2	6.1	21	21
R24 (R14)	0.008	0.2	5	5	0.2	6.9	22	22
R32 (R12)	0.013	0.1	5	5	0.4	2.1	21	21
R43 (R13)	0.028	0.1	5	5	1.6	3.4	22	22

 Table 5-8: Predicted cumulative (in combination with Broken Hill North Mine) annual average TSP, dust deposition and lead concentrations

Receptor ID (Broken Hill North Mine receptor ID)	Incremental (Mod 4 + CBP)	Broken Hill North Mine	Cumulative (Increment + TSF <u>normal</u> + background)	Cumulative (Increment + TSF <u>upset</u> + background)
TSP (µg/m³)				
Criterion	n/a	n/a	90	90
R2 (R38)	0.08	0.0	36	36
R11 (R34)	0.02	0.0	36	36
R17 (R28	0.01	0.0	36	36
R18 (R30)	0.01	0.0	36	36
R23 (R15)	0.05	0.1	36	36
R24 (R14)	0.05	0.1	36	36
R32 (R12)	0.07	0.1	36	36
R43 (R13)	0.14	0.1	36	36
Dust deposition (g/	m²/month)			
Criterion	n/a	n/a	8	8
R2 (R38)	0.023	0.0	1.6	1.6
R11 (R34)	0.006	0.0	1.6	1.6
R17 (R28	0.004	0.0	0.4	0.4
R18 (R30)	0.003	0.0	1.0	1.0
R23 (R15)	0.015	0.0	1.6	1.6
R24 (R14)	0.015	0.0	1.6	1.6
R32 (R12)	0.022	0.0	2.7	2.7
R43 (R13)	0.041	0.0	2.7	2.8
Lead concentration	ι (μg/m³)			
Criterion	n/a	n/a	0.5	0.5
R2 (R38)	0.0018	0.006	0.24	0.24
R11 (R34)	0.0005	0.006	0.24	0.24
R17 (R28	0.0003	0.006	0.24	0.24
R18 (R30)	0.0002	0.006	0.24	0.24
R23 (R15)	0.0009	0.006	0.24	0.24
R24 (R14)	0.0008	0.006	0.24	0.24
R32 (R12)	0.0008	0.006	0.24	0.24
R43 (R13)	0.0014	0.006	0.24	0.24

For all of the air quality metrics assessed the cumulative results that combine emissions from Rasp Mine's existing operations, the proposed Modification 4 and CBP, the proposed Broken Hill North Mine Recommencement Project and contributions from other background sources are all below the NSW impact assessment criteria at the nominated co-located receptors.

Finally, it is highlighted that the Rasp Mine MOD4 construction is only scheduled to occur over a short period; the concrete batching plant construction is scheduled to occur over 5 weeks, and the TSF extension for 14 months.

Without additional knowledge as to the Broken Hill North Mine's proposed scheduling and development consent pathway, it should further be acknowledged that the two activities may or may not be undertaken at the same time, and as such the above discussion of cumulative impacts should be regarded as worst-case.

6 DUST MANAGEMENT

An additional aspect of the assessment process is to evaluate current and future operational dust management practices for Rasp Mine. The following aspects are discussed for consideration in future dust management for the site.

6.1 Real-time PM and Meteorological Monitoring

BHOP currently monitors PM_{10} concentrations and wind speed/direction continuously at two locations (north and south of current mining operations).

Monitoring is anticipated to continue at these locations, and could additionally be supplemented with additional monitoring locations representative of conditions at the TSF.

By combining these real-time observations with telemetry and readily available software, it is possible to introduce SMS or email alerts to relevant site personnel when critical PM concentrations or wind speeds occur.

A short-term average (e.g. 1-hour average) PM₁₀ performance indicator can be set at a concentration that allows proactive dust management to be implemented in the event that PM concentrations are increasing, and may potentially approach the 24-hour PM₁₀ impact assessment criterion in the near future.

The field investigations (**Appendix E**) indicate that a critical wind speed of 11 m/s (40km/hr; measured at 10m) should be used as an initial alert value to trigger further investigation and remedial action as this is the threshold friction velocity where dust entrainment may occur.

Winds that reach 14 m/s (50km/hr) should be used as the critical wind speed alarm value when immediate action is required (i.e. implementation of TSF water sprays or chemical dust suppressant). A review of the onsite meteorological data indicates that winds exceeding 11m/s may occur 1.3% of the time (or 112 hours per year) and exceeding 14m/s 0.02% of the time (or 2 hours per year).

In addition, a particulate matter concentration an alarm and alert system may also be implemented. Default values adopted at other extractive industry sites for the 1 hour average concentration are 80µg/m³ as an alert / investigation level and 100µg/m³ as an alarm requiring immediate rectification.

Alert/alarm values may be reviewed iteratively to ensure that they are sufficiently protective without generating excessive false alarms.

The monitoring network would be reviewed and augmented (if warranted) to provide additional data relevant to the future operation of the TSF.

It is suggested that an augmentation to the existing PM monitoring might include a mobile PM / wind speed monitoring unit that can be placed close to the TSF surface and progressively moved as the TSF is filled. Such a location is the ramp that is annotated in **Figure 3-1**.

An appropriate example unit is the TSI DRX PM₁₀/PM_{2.5} monitor combined with Lufft sonic anemometer / weather station and solar power set-up.

6.2 Predictive / Forecast Meteorology and Real Time Management

An additional component of proactive dust management would be a meteorological forecasting system. This system is used to predict meteorological conditions for the coming day(s) to determine, at

a minimum one day in advance, when an elevated risk of PM emissions may occur (e.g. based on wind speed, direction, rainfall and atmospheric stability).

The predictive meteorological forecasting system would provide simple indicators of the following day's dust risk, based on meteorological conditions that are known to have adverse impacts, and would allow mine personnel to put measures into place in advance. An example of such preparatory measures would include:

- > scheduling additional water cart operations / chemical dust suppressant application;
- > planning for modifying or relocating certain activities; and
- > scheduling maintenance on equipment.

7 GREENHOUSE GAS EMISSIONS

The World Resources Institute / World Business Council for Sustainable Development Greenhouse Gas Protocol (the GHG Protocol) originally documented the different scopes for greenhouse gas (GHG) emission inventories. The GHG Protocol is the most widely used international accounting tool for government and business leaders to understand, quantify, and manage greenhouse gas emissions. This corporate accounting and reporting standard is endorsed by the Australian Department of Climate Change and Energy Efficiency.

The GHG Protocol defines three scopes for developing inventories leading to reporting of emissions. These scopes help to delineate direct and indirect emission sources, improve transparency, and provide a degree of flexibility for individual organisations to report based on their organisational structure, business activities and business goals.

Three scopes of emissions are defined in the GHG Protocol:

- 'Scope 1' emissions: direct GHG emissions occurring from sources owned or controlled by the company – for example vehicle fleet and direct fuel combustion. Any negative emissions (sequestration), for example from a plantation owned by the entity, would also be included in Scope 1.
- 'Scope 2' emissions: indirect GHG emissions from purchasing electricity or heat from other parties; and
- Scope 3' emissions: indirect emissions which occur due to the company's business activities, but from sources not owned or controlled by the company - for example emissions from employee business-related air travel.

Scope 1, 2 and 3 greenhouse gas emissions were quantified as part of the Rasp Mine Environment Assessment Report **(BHOP, 2010)**.

The proposed Modification 4 would be limited to Scope 1 emissions from diesel combustion. The diesel fuel consumption for Modification 4 is estimated to be approximately 350,000L of diesel fuel which equates to 0.9 ktCO_2 -eq.³

³ The **BHOP (2010)** annual Scope 1 fuel consumption was report as 1,604,400L resulting in an estimated 4.33 kt CO₂-eq. This is based on a 750,000 tpa ROM production rate. The total material to be moved for Modification 4 is approximately 79,000 m³ or 165,000 tonnes.

For the project in its entirety annual emissions of GHG (Scope 1 and 2) are estimated at 40.21 ktCO2-e per year. Modification 4 would add an additional 2% loading.

8 CONCLUSION

This report has assessed particulate matter and lead impacts associated with the proposed Modification 4 activities at Rasp Mine. Local land use, terrain, air quality and meteorology have been considered in the assessment and dispersion modelling was completed using the AERMOD modelling system.

A comprehensive analysis of the baseline air quality was updated as part of this assessment, that now includes data up to and including December 2016. A comparison of the 2016 current operations modelling with the original modelling completed for the PPR **(Environ, 2010)** showed a decrease in impacts for all assessment criteria that are annually averaged. At some receptors, maximum predictions over short term averaging periods show an increase relative to PPR predictions. These changes are anticipated to be as a result of different meteorology, source locations and emissions inventory across the two modelling scenarios. The long term comparison demonstrates a continual improvement in the local air quality.

A worse case operating scenario for the modification activities was assessed with the construction of Embankment 2, Embankment 3 and the CBP in full operation. Emissions were calculated both in terms of annual average emissions and a 24-hour worst case scenario. The results demonstrate compliance with all the NSW EPA impact assessment criteria for all air quality parameters assessed.

The projected emissions from Modification 4 will only occur for up to 14 months during the construction period. On that basis, and the relatively minor contribution to predicted air quality at nearest sensitive receptors, the overall impact of Modification 4 is unlikely to have a discernible change in local air quality.

Cumulative impacts from the proposed Broken Hill North Mine Recommencement Project have been assessed for the short term and long term air quality metrics that include PM₁₀, PM_{2.5}, TSP, dust deposition and lead concentration. No data were presented for lead deposition and therefore limited to these metrics. The results demonstrate no exceedance of the NSW impact assessment criterion at any of the co-located receptors assessed.

A semi-quantitative approach was used to estimate greenhouse gas emissions. These emissions from the proposed Modification 4 would add an additional 2% loading to the annual emissions from Rasp Mine. In view of the above, it is anticipated that the proposed Modification 4 for Rasp Mine will result in negligible change to the local air quality.

As such, it is anticipated that the proposed embankment construction and CBP operation may be operated to ensure that there are no adverse air quality impacts associated with these activities in isolation, or in the context of the mine as a whole (i.e. cumulative air quality impacts).

I trust that the above provides sufficient detail and explanation for the required purpose. Please do not hesitate to contact the undersigned should you wish for clarification of any aspect of the above.

Yours sincerely,

ARacks

Damon Roddis Practice Leader – Air Quality and Noise Pacific Environment Limited Phone: 02 9870 0900 Fax: 02 9870 0999 Email: damon.roddis@pacific-environment.com

9 **REFERENCES**

Bolander, P., & Yamada, A. (1999), Dust Palliative Selection and Application Guide. United States Department of Agriculture Forest Service California, USA, November 1999.

BHOP (2010). Rasp Mine Zinc-Lead-Silver Environment Assessment Report. July 2010. https://majorprojects.affinitylive.com/public/c0188a2ed0f0f5facd6fc5c78b8987e5/Chapter%208%20-%20Air%20Quality%20and%20Greenhouse%20Gases_A4.pdf

Environ (2010a). Air quality assessment in support of the Development Application for the Rasp Underground Mine Project (ENVIRON report reference 1150_BHOP Rasp Air_Final_19Mar10, dated 19 March 2010.

https://majorprojects.affinitylive.com/public/dc043d695919acd91b4125ace23b2680/Annexure%20H%2 0-%20Air%20Quality%20Assessment.pdf

Environ (2010b) Rasp Mine, Broken Hill: Air Quality Assessment Addendum - Proposed Relocation of the Processing Area, dated 21 September 2010. https://majorprojects.affinitylive.com/public/6aa46fe37698fddb67833c6be828ff08/annexure-b.pdf

EPA (2005). Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales, NSW Department of Environment and Conservation (now EPA).

Pacific Environment (2011). Re: Air Quality Assessment for Rasp Mine Revised Ventilation Stack Location. Letter report to BHP. Job number 20515G. 4 October 2015.

Pacific Environment (2013). Re: Validation study of modelling predictions and monitoring results for the Rasp Mine, Broken Hill NSW. Letter report to BHP. Job number 20515G. 12 March 2013.

Pacific Environment (2014). CBH Rasp Mine Broken Hill AQ Monitoring Data Review. Internal technical memorandum for input to Pacific Environment (2015a). Job number 8844. 17 September 2014

Pacific Environment (2015a). Health Risk Assessment Rasp Mine Broken Hill. Job number 8844. 25 September 2015.

Pacific Environment (2015b). Re: Health Risk Assessment for the Rasp Mine at Broken Hill. Letter report to BHP. Job number 20515G. 25 September 2015.Pacific Environment (2016). Re: Rasp Mine Wind Erosion Field Analyses. Letter Report dated December 2016.

APPENDIX A. EMISSIONS INVENTORY AND ASSUMPTIONS FOR MODIFICATION 4

	ACTIVITY	TSP	Intensity Units	Emission factor Units	Variable 1 Units	Variable 2 Units	Variable 3 Units	Variable 4 Units	Variable 5 Units	Control Units
							valiable 3 offits	Valiable 4 Units	Vanable 5 Ofins V	50 % control
Name of control for Spread Sprea Spread Sprea							4.4 km/return trip	0.1189 kg//kt	0.5 silt logding /g/m	0 % control
Name dot. And of L Mark Mark Mark Mark Mark Mark Mark Mark										80 % control
Berg Berg Propert Poorting Add							1.7 km/reforminp	2.5556 Kg/VKI	4.4 % SIII CONTERN	50 % control
Image Deck Image D										50 % control
mig Experiment and B 440 (paid) 0.00000000000000000000000000000000000							0.4 km/roturn trip	0.5257 h= 0/KT	4.4 % sitt sestent	80 % control
Initeration based advance due not be solved of the specific due							0.4 km/refum mp	2.5356 Kg/VKI	4.4 % slit content	50 % control
Bite rade / bit / bite / bit										50 % control
mile samt J. Sub IS Jansen M. (1) Samt Markad Samt Markad <ths< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0044</td><td>0.5 vilt la patie a la la</td><td>0 % control</td></ths<>								0.0044	0.5 vilt la patie a la la	0 % control
Inter and and a large at		01								80 % control
Chardner Lead and yesControl Lead and yes <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0.0 km/return trip</td><td>2.1596 kg/VKI</td><td>4.4 % silt content</td><td></td></t<>		-					0.0 km/return trip	2.1596 kg/VKI	4.4 % silt content	
Outlet schwart inger - Kalt 2 gluesel 11 2000 Myser 0.038 Um/d 13 Mixed 44 Removelial equations 1.1 Myser 0.8 Mixed masses 0 Contractions 10000 1000 10000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50 % control</td>										50 % control
Outlet diversition Outlet										50 % control
Calued construint or - Autor of 2 4 4200 Verice 0.000 (up1)										0 % control
Obtained containing and service printing containing and service printin							1.7 km/return trip	2.5356 kg/VKT	4.4 % silt content	80 % control
Condent control reprint providing of lines. Not 10 [condent mice look (informaticols) (2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %				50 % control
Tocand search rays in ball in Springer Index model memory in ball in Springer Index memor										
Disc or statistic anchoge of lies - hould 22 (unset of end of e				0.0100 kg/t						
Obstitutives B H0 Concernance meteric locating low M <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 % control</td>										0 % control
Card starter Card starter<							100 T T T T T			80 % control
2: Deem 1.31 Mini Scolar- Editor contruction 3.31 Mini Scolar- Editor contruction 3.331 Mini Scolar- Editor contruction 3.331 Mini Scolar- Editor contructin 3.3331 <td>Crest anchor trench - haul to E2 (sealed)</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>6.4 km/return trip</td> <td>0.0328 kg/VKT</td> <td>0.5 silt loading (g/n</td> <td>0 % control</td>	Crest anchor trench - haul to E2 (sealed)	8					6.4 km/return trip	0.0328 kg/VKT	0.5 silt loading (g/n	0 % control
Mind South - 20 (utiling contruction) 120 Inc.	Crest anchor trench - haul to E2 (unsealed)	-	40 concrete mixer loads (return)			25 Vehicle gross mass (†)	0.0 km/return trip	1.8562 kg/VKT	4.4 % silt content	80 % control
Wind store - 12 (pter contruction) OH D <thd< th=""> <thd< th=""> D <</thd<></thd<>	E2 - Dozer	1,319	715 h/period	3.6886 kg/hr	4.4 Silt content	3 moisture content				50 % control
Inck. movement - centeri 34 12a Inck. spore 0.223 ig/mip mode mode Spore Spo	Wind Erosion - E2 (during construction)	281	0.6 ha	0.1000 kg/ha/h	4,380 h/y					0 % control
Tack movement - loggegale 63 300 Incklywar 0.275 kg/rip - 655 Vehice goss most (1) 2.2 km/retun lip 0.1024 kg/riv 0.53 bit looding (m 0 Tick movement - stolcrete 127 1.518 Incklywar 0.0255 kg/riv 0.0325 kg/riv 0.0326 kg/riv	Wind Erosion - E2 (after cosntruction)	14	0.6 ha	0.1000 kg/ha/h	4,380 h/y					95 % control
Inck movement-oggregate 88 300 Inck spore 0.275 g/hp Import 0.275 g/hp Import 0.275 g/hp 0.104 g/mp 0.024 g/mV 0.024 g/mV 0.0124 g/mV 0.011 g/mV 0.0001 g/mV 0.0000 g/mV	Truck movement - cement	34	126 trucks/vear	0.2673 kg/trip		29 Vehicle gross mass (†)	5.0 km/ return trip	0.0533 kg/VKT	0.5 silt loading (g/n	0 %control
Tinck movement - sold 317 11.51 Inck/wer 0.25 gr/mp 13 poyload (tronne) 55 Vehicle gross mas (t) 2.2 im/returning 0.004 lg/MT 0.05 gil loading (p/m 0.00 Loading cenert of al slote de gross mas (t) 2.2 im/returning 0.003 lg/m 0.000 lg/m 0	Truck movement - aggregate	83				55 Vehicle gross mass (†)		0.1024 kg/VKT	0.5 silt loading (g/n	0 %control
Thick movement - shotcrete 1.18 Inck/weither 0.0000 km/r 0.0000 km/r </td <td></td> <td></td> <td></td> <td></td> <td>13 payload (tonnes)</td> <td></td> <td></td> <td></td> <td></td> <td>0 %control</td>					13 payload (tonnes)					0 %control
Loading cement and lading 13 6.60 I/V 0.001% bg/m 2.90 oregoed (wind speed/2.2) i.1.3 m/r) 33 noithue content in* 0.00 0.0000 0.0000 0.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 %control</td>										0 %control
Aggregate transfer 33 9.34 i/v 0.001 kg/n 0.000 kg/n					2.90 average of (wind speed/2.2)/\1.3 in m/s					
Same frame/er 16 14.90 1/y 0.000 1/y										
Camera Itansfer 3 6.400 (y' 0.0005 (y'										
weight poper loading 93 93.908 // v 0.000 kp/m 0.000 kp/m <td></td>										
Intel Loading 39.90 30.908 // 0.0400 ght mm mm <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>75</td></th<<>										75
Residual from de-dusted oir looding cement and fly 0 00000 p/kin3 34 Imm3/minute 1 minutes/tonne 0 <td></td>										
Wind reacion (aggregate stock piles) 24 0.1 no 0.1000 kg/ha/n 8.760 h/y P E					2.4 Mar 2 Juniou da) minutes (terms				75
Wind reasion (whole GBP) 15 0.4 no 0.000 8/n hot 8/n hot 8/n hot 0.000 8/n hot 8/n hot 0.000 8/n hot 8/n hot 0.000 8/n hot 9/n hot 0.000 8/n hot 0.000						i minures/ronne				70 % = = = t = =
Waste rock-load in pit 43,050 //period 0.0019 kg/rt 2.90 orage of (wind speed/2.2)/1.3 in m/s 3 molture content in % image of kg/rt 0.17 kg/rt 0.180 0.0019 kg/rt 0.200 m/sterock-houl to E3 (unseled) 1.17 km/return trip 0.187 kg/rt 0.4.5 Sill coding (g/rt 0.0019 kg/rt 0.2014 kg/rt </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>70 %control 95 %control</td>										70 %control 95 %control
Wraste rock - houl to E3 (unsealed) 11.44 20.500 m3/period 0.2790 kg/m3 13 m3/load 36 man welce mass (1) 1.7 Im/return tip 2.1872 kg/m1 4.4 % sill content 80 Waste rock - houl to E3 (sealed) 300 20.500 m3/period 0.0147 kg/m3 1.3 m3/load 36 mean velcle mass (1) 2.1872 kg/m1 0.55 sill content 80 0 0 0 0.0019 kg/m3 1.3 m3/load 36 mean velcle mass (1) 2.19 kg/m1 0.55 sill content 80 0 0 0 0.0019 kg/m3 1.5 M3/load 35 Ms/load 36 Ms/load 36 Ms/load 36						2 maisture content in W				
Wasterock - haul to E3 (secled) 300 20.500 m3/period 0.0147 kg/m3 13 m3/load 36 mean vehicle mass (1) 2.9 km/return trip 0.0665 kg/k1 0.0 58 11 0.0019 kg/m3 13 m3/load 36 mosture content in % 0 <							1.7 lung (and ung daing	0.1070 1 0.007	1.1 m - 11 1	50 % control 80 % control
Wrate rock-dump of B 42 43.050 //period 0.0019 kg/t 2.90 overage of (wind speed/2.2)A1.3 in m/s 3 molture content in % Image: conte										
Filter sand - load at external site 5 5.040 t/period 0.0019 k/r 2.90 overage of (wind speed/2.2)-1.3 in m/s 3 moisture content in % 0 0 0.004 kg/r 0.006 kg/r 0.007 kg/r 0.000 kg/r 0.000 kg/r 0.000 kg/r 0.0000 kg/r 0.0000							2.7 km/return trip	0.0665 Kg/VKI	U.S silf lodding (g/n	-
Filter sand - haul to E3 (unseded) 10 2.100 m3/period 0.0238 kg/m3 15 m3/load 35 Vehicle gross moss (1) 5.5 km/return trip 0.0464 kg/NT 0.05 sill loading (p/n 80 s Filter sand - dump at E3 5 5.040 l/period 0.0019 kg/N 2.90 overage of (wind speed/2.2)1.3 in m/s 3 moisture content in % 6 6 6 60<										50 % control
Filtersand-dump at 53 5040 //period 0.0019 //p/t 2.90 //period 3.001 //period 3.001 //period 5.000 //period 5.000 //period 0.0019 //p/t 2.90 //period 3.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.5 1</td> <td>0.0///</td> <td>0.5 111. 5</td> <td>50 % control</td>							5.5 1	0.0///	0.5 111. 5	50 % control
Cushed rock rest layer - load in pit 4 4200 lpreind 0.0019 kg/k1 2.90 overage of (wind speed/2.2)-1.3 in m/s 3 molsture content in % image of (wind speed/2.2)-1.3 in m/s 3 molsture content in % image of (wind speed/2.2)-1.3 in m/s 3 molsture content in % image of (wind speed/2.2)-1.3 in m/s 3 molsture content in % image of (wind speed/2.2)-1.3 in m/s 3 molsture content in % image of (wind speed/2.2)-1.3 in m/s 3 molsture content in % 1.12 kg/k1 4.44 % silt content in % 0 0 0.005 kg/k1 0.006 kg/k1 0.000 kg/k1 0.000 kg/k1 0.000 kg/k1 0.000 kg/k1 0.000 kg/k1 0.000 kg/k1 0.0000 kg/k1 0.0000 kg/k1 0.0000 kg/k1 0.0000 kg/k1 0.0000 kg/k1 0.0000 kg/k1 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.5 km/return trip</td> <td>0.0646 kg/VKT</td> <td>0.5 silt loading (g/n</td> <td>80 % control</td>							5.5 km/return trip	0.0646 kg/VKT	0.5 silt loading (g/n	80 % control
Crusted rock rest loyer - hould to E3 (unsealed) 112 Zown m3/erar 0.2790 kg/m3 13 m3/load 36 mean vehicle mass (1) 1.7 km/return trip 2.1872 kg/VK 4.4 % silt content 80 modes Waster ock - hould to E3 (unsealed) 29 m3/period 0.0147 kg/m3 13 m3/load 36 mean vehicle mass (1) 2.1 29 km/return trip 2.1872 kg/VK 4.4 % silt content 80 modes Crusted rock rest loyer - dunp at B3 4 4.200 t/period 0.00147 kg/m3 2.900 verage of (wind speed/2.2)^1.3 in m/s 3 modisue content in % 0		-								50 % control
Waste rock - houl to E3 (seeled)292.00m3/period0.0147kg/m313m3/load36mean vehicle mass (f)2.9km/return trip0.0655kg/VKT0.5sil loading (g/n0Crushed rock rest loyer - sterning in pit4.2001/period0.0019kg/r2.90overage of (kind speed/2.2)+1.3 in m/s3moisture content in %66 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50 % control</td></td<>										50 % control
Crushed rock rest loyer - dump at E3 4 4200 l/period 0.0019 kg/t 2.90 or array or age of (wind speed/2.2)h1.3 in m/s 3 moisture content in % 6 6 6 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80 % control</td>										80 % control
Clushed rock rest layer - screening in pit - 4.200 t/period 0.0000 kg/t -							2.9 km/return trip	0.0665 kg/VKT	0.5 silt loading (g/n	
Cushed rock rest layer - primary crushing in pi 42 4200 lpreiod 0.0100 kg/t end <		4			2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %				50 % control
Tote and side anchorage of liner haul to E3 (unseed 35 17 concrete mixer loads (return) 6 Part of the second	Crushed rock rest layer - screening in pit									
Crest anchor trench - haulto E3 (unsealed) 35 17 concrete mixer loads (return) w m 20 w 20 w 20 Weile gross mass (t) 5.5 km/return trip 1.850 kg/VET 4.4 %silt content 80 E3-Dozer 1.09 556 hperiod 3.8886 kg/hr 4.4 Silt content 3 moisture content 6			4,200 †/period	0.0100 kg/t						
Cest anchor trench - haulto £3 (unsealed) 35 17 concrete mixer loads (return) mode mode <thmode< th=""> mode mode<td>Toe and side anchorage of liner - haul to E3 (unsea</td><td>35</td><td>17 concrete mixer loads (return)</td><td></td><td></td><td>25 Vehicle gross mass (†)</td><td>5.5 km/return trip</td><td>1.8562 kg/VKT</td><td>4.4 % silt content</td><td>80 % control</td></thmode<>	Toe and side anchorage of liner - haul to E3 (unsea	35	17 concrete mixer loads (return)			25 Vehicle gross mass (†)	5.5 km/return trip	1.8562 kg/VKT	4.4 % silt content	80 % control
E3-Dozer 1.09 5% Mperiod 3.688k kg/m 4.4 Siti content 3 moisture content 6 7 <th7< th=""> 7 <th7< th=""> <th7< th=""></th7<></th7<></th7<>			17 concrete mixer loads (return)			25 Vehicle gross mass (†)	5.5 km/return trip	1.8562 kg/VKT	4.4 % silt content	80 % control
Wind Ension - E3 (during construction) 153 0.3 ha 0.1000 kg/ha/h 4.380 h/y e		1,099	596 h/period	3.6886 kg/hr	4.4 Silt content	3 moisture content				50 % control
Wind Erosion - E3 (after cosntruction) 8 0.3 ho 0.1000 kg/ha/h 4.380 h/y E E E E E 99 %	Wind Erosion - E3 (during construction)	153			4,380 h/y					0 % control
										95 % control
	Total (kg/y)	9.341			.,					

ACTIVITY	PM10	Intensity	Units	Emission Units V	ariable 1	Units	Variable	2 Units	Variable 3	Units	Variable 4	Units	Variable 5	Units	Control Units
Waste rock - load in pit	28		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %		Units	- unable 4	Units		0.1113	50 % control
Wasterock - Ioda Inpli Wasterock - haul to E2 (sealed)	126		m3/period	0.0043 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.0128	ka/VKT	0.5 silt l	oading (g/n	0 % control
Wasterock - haul to E2 (usealed) Wasterock - haul to E2 (unsealed)	405		m3/period	0.0699 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.5478			t content	80 % control
Wasterock - Hadrid E2 (drisedied) Wasterock - dump at E2	28		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %		kinijieruininp	0.5478	Kg/ V KI	4.4 /0 511	Comen	50 % control
Prep E2 footprint - load at E2	20		t/period	0.0003 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %							50 % control
Prep E2 footprint - haul within E2	11		m3/period	0.0274 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.5478	ka ////T	4 A 97 cil	t content	80 % control
Prep E2 footprint - hubi within E2	2		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %		kin/ieroinnip	0.3478	Kg/ V KI	4.4 /0 311	Content	50 % control
Filter sand - load at external site	2		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in average of (wind speed/2.2)^1.3 in		3 moisture content in %							50 % control
Filter sand - haul to E2 (sealed)	11		m3/period	0.0054 kg/m3		m3/load		36 mean vehicle mass (†)		km/return trip	0.0128	ka///T	0.5 citt I	oading (g/m	0 % control
			m3/period	0.0000 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip					80 % control
Filter sand - haul to E2 (unsealed)	- 2		t/period	0.0000 kg/m3		average of (wind speed/2.2)^1.3 in		3 moisture content in %		km/reforminp	0.5478	KG/VKI	4.4 % SII	t content	50 % control
Filter sand - dump at E2	-		t/period												50 % control
Crushed rock rest layer - load in pit	2			0.0009 kg/t		average of (wind speed/2.2)^1.3 in m3/load		3 moisture content in %		Loss for Loss 1.2 a	0.0100	L 0. (1/T	0.5	P ((-	
Crushed rock rest layer - haul to E2 (sealed)			m3/year	0.0043 kg/m3				6 mean vehicle mass (†)		km/return trip	0.0128			oading (g/n	0 % control
Crushed rock rest layer - haul to E2 (unsealed)	28		m3/year	0.0699 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.5478	kg/VKT	4.4 % sil	t content	80 % control
Crushed rock rest layer - dump at E2	2		t/period	0.0009 kg/t	2.90	average of (wind speed/2.2)^1.3 in		3 moisture content in %							50 % control
Crushed rock rest layer - screening in pit	-		t/period	0.0000 kg/t											
Crushed rock rest layer - primary crushing in pit	17		t/period	0.0040 kg/t											
Toe and side anchorage of liner - haul to E2 (sealed)	2		concrete mixer loads (return)					8 mean vehicle mass (†)		km/return trip	0.0063	<u>0</u> .		oading (g/n	0 % control
Toe and side anchorage of liner - haul to E2 (unsealed)	-		concrete mixer loads (return)					25 Vehicle gross mass (†)		km/return trip	0.4649			t content	80 % control
Crest anchor trench - haul to E2 (sealed)	2		concrete mixer loads (return)					8 mean vehicle mass (†)		km/return trip	0.0063			oading (g/m	0 % control
Crest anchor trench - haul to E2 (unsealed)	-		concrete mixer loads (return)					25 Vehicle gross mass (†)	0.0	km/return trip	0.4649	kg/VKT	4.4 % sil	t content	80 % control
E2 - Dozer	239		h/period	0.6691 kg/hr		Silt content		3 moisture content							50 % control
Wind Erosion - E2 (during construction)	140		ha	0.0500 kg/ha/h	4,380										0 % control
Wind Erosion - E2 (after cosntruction)	7	0.6		0.0500 kg/ha/h	4,380	h/y									95 % control
Truck movement - cement	6		trucks/year	0.0513 kg/trip				9 Vehicle gross mass (†)		km/return trip	0.0102			oading (g/n	0 %control
Truck movement - aggregate	16		trucks/year	0.0529 kg/trip				55 Vehicle gross mass (†)		km/return trip	0.0197			oading (g/n	0 %control
Truck movement - sand	61		trucks/year	0.0529 kg/trip	13	payload (tonnes)		55 Vehicle gross mass (†)		km/return trip	0.0197			oading (g/n	0 %control
Truck movement - shotcrete	25		trucks/year	0.0164 kg/trip			1	8 Vehicle gross mass (†)	2.6	km/ return trip	0.0063	kg/VKT	0.5 silt l	oading (g/n	0 %control
Loading cement at rail siding	6	6,600	t/y	0.0009 kg/t	2.90	average of (wind speed/2.2)^1.3 in		3 moisture content in %							
Aggregate transfer	16	9,348	t/y	0.0017 kg/t											
Sand transfer	8	14,960	t/y	0.0005 kg/t											
Cement transfer	1	6,600	t/y	0.0002 kg/t											
Weigh hopper loading	10	30,908	t/y	0.0013 kg/t											75
Truck loading	101	30,908	t/y	0.0131 kg/t											75
Residual from de-dusted air loading cement and fly-ash	53	30,908	t/y	0.0500 g/Nm3	34	Nm3/minute		1 minutes/tonne							
Wind erosion (aggregate stock piles)	13	0.1		0.0500 kg/ha/h	8,760	h/y									70 %control
Wind erosion (whole CBP)	8	0.4	ha	0.0500 kg/ha/h	8,760	h/y									95 %control
Waste rock - load in pit	20	43,050	t/period	0.0009 kg/t	2.90	average of (wind speed/2.2)^1.3 in		3 moisture content in %							50 % control
Wasterock - haul to E3 (unsealed)	286	20,500	m3/period	0.0699 kg/m3	13	m3/load	3	36 mean vehicle mass (†)) 1.7	km/return trip	0.5478	kg/VKT	4.4 % sil	t content	80 % control
Wasterock - haul to E3 (sealed)	58	20.500	m3/period	0.0028 kg/m3	13	m3/load	3	6 mean vehicle mass (†)	2.9	km/return trip	0.0128	ka/VKT	0.5 silt	oading (g/m	0
Waste rock - dump at E3	20		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %				- Q.		0 10.	50 % control
Filter sand - load at external site	2		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %							50 % control
Filter sand - haul to E3 (unsealed)	2		m3/period	0.0047 kg/m3	15	m3/logd	3	6 mean vehicle mass (†)	5.5	km/return trip	0.0128	ka/VKT	0.5 silt l	oading (g/n	80 % control
Filter sand - dump at E3	2		t/period	0.0009 kg/t	2.90	average of (wind speed/2.2)^1.3 in		3 moisture content in %				0.		0 10.	50 % control
Crushed rock rest layer - load in pit	2		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %			-				50 % control
Crushed rock rest layer - haul to E3 (unsealed)	28		m3/year	0.0699 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.5478	ka//KT	A A % cil	t content	80 % control
Waste rock - haul to E3 (sealed)	6		m3/period	0.0028 kg/m3		m3/load		6 mean vehicle mass (†)		km/return trip	0.0128			oading (g/m	0
Crushed rock rest layer - dump at E3	2		t/period	0.0009 kg/t		average of (wind speed/2.2)^1.3 in		3 moisture content in %			0.0120		0.0 311 1		50 % control
Crushed rock rest layer - screening in pit	-		t/period	0.0000 kg/t	2.70										00 /0 00/11/01
Crushed rock rest layer - primary crushing in pit	17		t/period	0.0040 kg/t											
Toe and side anchorage of liner - haul to E3 (unsealed)	10		concrete mixer loads (return)	0.0040 kg/1				36 mean vehicle mass (†)	5.5	km/return trip	0.5478	ka M/KT	A A 07 -11	t content	80 % control
Crest anchor trench - haul to E3 (unsealed)	10		concrete mixer loads (return)					6 mean vehicle mass (†)		km/return trip	0.5478			t content	80 % control
	10		h/period	0.4491 kg/br		Silt content			, 5.3	kinneroinninp	0.54/8	KG/VKI	4.4 % SII	Content	50 % control
E3 - Dozer				0.6691 kg/hr				3 moisture content							50 % control
Wind Erosion - E3 (during construction)	76		ha	0.0500 kg/ha/h	4,380										0 % control 95 % control
Wind Erosion - E3 (after cosntruction)		0.3	na	0.0500 kg/ha/h	4,380	n/y									75 % control
Total (kg/y)	2,131														

Variable 2 Units Variable 3 Units Variable 4 Units Variable 5 Units Control Units 1mr/s 3 moisture content in % 1 Variable 4 Units Variable 5 Units Control 50 % control 44 mean vehicle mass (t) 4.4 km/return trip 0.0228 kg/VKT 0.5 sitt locading (g/r 0 % control

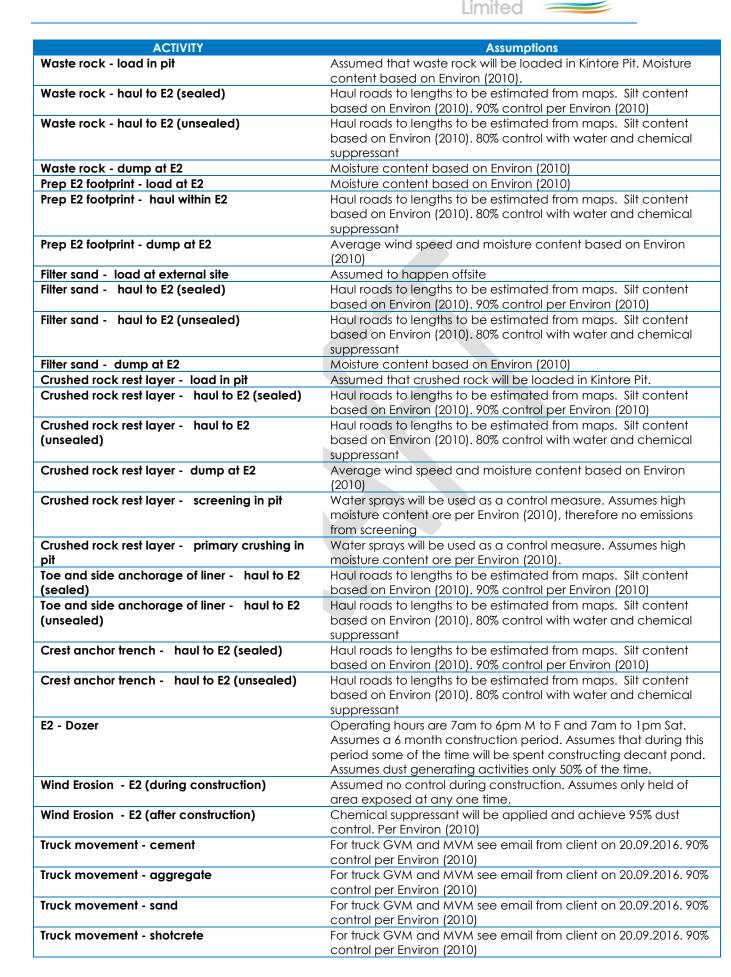
		inclusing	011115	Emission actor				Tunubic C	01115	Tunuble 4	01110		
Waste rock - load in pit	176	383,250		0.0009		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Waste rock - haul to E2 (sealed)	1,413		m3/period		7 kg/m3	13 m3/load	64 mean vehicle mass (†)		km/return trip		kg/VKT	0.5 silt loading (g/n	0 % control
Wasterock - haul to E2 (unsealed)	2,956		m3/period) kg/m3	13 m3/load	50 Vehicle gross mass (†)	1.7	km/return trip	0.6351	kg/VKT	4.4 % silt content	80 % control
Waste rock - dump at E2	176	383,250	t/period	0.0009		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Prep E2 footprint - load at E2	-	-	t/period	0.0003		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Prep E2 footprint - haul within E2	-	-	m3/period		3 kg/m3	8 m3/load	50 Vehicle gross mass (†)	0.4	km/return trip	0.6351	kg/VKT	4.4 % silt content	80 % control
Prep E2 footprint - dump at E2	-		t/period	0.0009		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Filter sand - load at external site	-	-	t/period	0.0009		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Filter sand - haul to E2 (sealed)	-	-	m3/period		7 kg/m3	15 m3/load	51 mean vehicle mass (†)	6.4	km/return trip	0.0181	kg/VKT	0.5 silt loading (g/m	0 % control
Filter sand - haul to E2 (unsealed)	-	-	m3/period) kg/m3	15 m3/load	35 Vehicle gross mass (†)	0.0	km/return trip	0.5409	kg/VKT	4.4 % silt content	80 % control
Filter sand - dump at E2	-	-	t/period	0.0009	kg/t	2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Crushed rock rest layer - load in pit	-	-	t/period	0.0009		2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Crushed rock rest layer - haul to E2 (sealed)	-	-	m3/year	0.0077	7 kg/m3	13 m3/load	64 mean vehicle mass (†)	4.4	km/return trip	0.0228	kg/VKT	0.5 silt loading (g/m	0 % control
Crushed rock rest layer - haul to E2 (unsealed)	-	-	m3/year	0.0810) kg/m3	13 m3/load	50 Vehicle gross mass (†)	1.7	km/return trip	0.6351	kg/VKT	4.4 % silt content	80 % control
Crushed rock rest layer - dump at E2	-	-	t/period	0.0009	kg/t	2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						50 % control
Crushed rock rest layer - screening in pit	-	100,375	t/period	0.0000	kg/t								
Crushed rock rest layer - primary crushing in pit	402	100,375	t/period	0.0040	kg/t								
Toe and side anchorage of liner - haul to E2 (sealed)	15	365	concrete mixer loads (return)				18 mean vehicle mass (†)	6.4	km/return trip	0.0063	kg/VKT	0.5 silt loading (g/m	0 % control
Toe and side anchorage of liner - haul to E2 (unsealed	-	365	concrete mixer loads (return)				25 Vehicle gross mass (†)	0.0	km/return trip	0.4649	kg/VKT	4.4 % silt content	80 % control
Crest anchor trench - haul to E2 (sealed)	15	365	concrete mixer loads (return)				18 mean vehicle mass (†)	6.4	km/return trip	0.0063	kg/VKT	0.5 silt loading (g/m	0 % control
Crest anchor trench - haul to E2 (unsealed)	-		concrete mixer loads (return)	1			25 Vehicle gross mass (†)	0.0	km/return trip	0.4649	kg/VKT	4.4 % silt content	80 % control
E2 - Dozer	611	1,825	h/period	0.6691	kg/hr	4.4 Silt content	3 moisture content						50 % control
Wind Erosion - E2 (during construction)	281	0.6		0.0500) kg/ha/h	8,760 h/y							0 % control
Wind Erosion - E2 (after cosntruction)	14	0.6	ha	0.0500) kg/ha/h	8,760 h/y							95 % control
Truck movement - cement	8	161	trucks/year	0.0513	8 kg/trip		29 Vehicle gross mass (†)	5.0	km/ return trip	0.0102	kg/VKT	0.5 silt loading (g/m	0 %control
Truck movement - aggregate	20	383	trucks/year	0.0529	kg/trip		55 Vehicle gross mass (†)	2.7	km/ return trip	0.0197	kg/VKT	0.5 silt loading (g/m	0 %control
Truck movement - sand	78	1,469	trucks/year	0.0529	kg/trip	13 payload (tonnes)	55 Vehicle gross mass (†)	2.7	km/ return trip	0.0197	kg/VKT	0.5 silt loading (g/m	0 %control
Truck movement - shotcrete	32	1,937	trucks/year	0.0164	t kg/trip		18 Vehicle gross mass (†)	2.6	km/ return trip	0.0063	kg/VKT	0.5 silt loading (g/m	0 %control
Loading cement at rail siding	7	7,763		0.0009	kg/t	2.90 average of (wind speed/2.2)^1.3 in m/s	3 moisture content in %						
Aggregate transfer	19	10,995	t/y	0.0017	kg/t								
Sand transfer	9	17,596	t/y	0.0005	kg/t								
Cement transfer	1	7,763	t/y	0.0002	. kg/t								
Weigh hopper loading	12	36,354	t/y	0.0013	kg/t								75
Truck loading	119	36,354		0.0131	kg/t								75
Residual from de-dusted air loading cement and fly-ast	62	36,354	t/y	0.0500) g/Nm3	34 Nm3/minute	1 minutes/tonne						
Wind erosion (aggregate stock piles)	13	0.1	ha	0.0500) kg/ha/h	8,760 h/day							70 %control
Wind erosion (whole CBP)	8	0.4	ha	0.0500) kg/ha/h	8,760 h/day							95 %control
Total (kg/y)	6,447												

Units

PM10 Intensity Units Emission factor Units Variable 1

ACTIVITY

ACTIVITY Units 3 moisture content in % le 3 ble 4 Unit 60,900 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 50 % control Waste rock - load in pit 4.4 km/return trip 0.5 silt loading (g/m Waste rock - haul to E2 (sealed) 29,000 m3/period 0.0010 kg/m3 36 mean vehicle mass (†) 0.0031 kg/VKT 0 % control Waste rock - haul to E2 (unsealed 41 29.000 m3/period 36 mean vehicle mass (t) 1.7 km/return trip 0.0548 kg/VKT 4.4 % silt conten 80 % control 2.90 average of (wind speed/2.2)^1.3 in m/s Waste rock - dump at E2 60,900 t/period 3 moisture content in % 4,200 t/period 0.0001 kg/t 2.90 gverage of (wind speed/2.21^1.3 in m/s 50 % control Prep E2 footprint - load at E2 3 moisture content in % 0.0027 kg/m3 8 m3/load 80 % control Prep E2 footprint - haul within E2 2.000 m3/period 36 mean vehicle mass (1) 0.4 km/return trip 0.0548 kg/VKT 4.4 % silt content 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 50 % control 4,200 t/period 3 moisture content in % Prep E2 footprint - dump at E2 Filter sand - load at external site 5,280 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % control 0.0031 kg/VKT 0.5 silt loading (g/r 0 % contro Filter sand - haul to E2 (sealed) 2 000 m3/period 36 mean vehicle mass (t) 6.4 km/return trip 0.0000 kg/m3 15 m3/load 80 % control 0.0548 kg/VKT Filter sand - haul to F2 (unsealed 2.000 m3/period 36 mean vehicle mass (†) 0.0 km/return trip 4.4 % silt content 5,280 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % control Filter sand - dump at E2 4,200 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % control Crushed rock rest layer - load in pit Crushed rock rest layer - haul to E2 (sealed) 2,000 m3/year 0.0010 kg/m3 13 m3/load 36 mean vehicle mass (†) 4.4 km/return trip 0.0031 kg/VKT 0.5 silt loading (g/r 0 % control rushed rock rest layer - haul to E2 (unsealed) 2,000 m3/year 0.0070 kg/m3 36 mean vehicle mass (t) 1.7 km/return trip 0.0548 kg/VKT 4.4 % silt conten 80 % control 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s Crushed rock rest layer - dump at E2 4.200 t/period 3 moisture content in % 50 % control Crushed rock rest layer - screening in pit 4.200 t/period 0.0000 ka/t 0.0011 kg/t 4,200 t/period Crushed rock rest layer - primary crushing in pit Toe and side anchorage of liner - haul to E2 (sealed) 40 concrete mixer loads (return 18 mean vehicle mass (†) 6.4 km/return trip 0.0015 kg/VKT 0.5 silt loading (g/m 0 % contro Toe and side anchorage of liner - haul to E2 (unsealed 40 concrete mixer loads (return) 25 Vehicle gross mass (†) 0.0 km/return trip 0.0465 kg/VKT 4.4 % silt content 80 % control Crest anchor trench - haul to E2 (sealed) 40 concrete mixer loads (return) 18 mean vehicle mass (t) 6.4 km/return trip 0.0015 kg/VKT 0.5 silt loading (g/m 0 % control 80 % control Crest anchor trench - haul to E2 (unsealed) 40 concrete mixer loads (return) 25 Vehicle gross mass (†) 0.0 km/return trip 0.0465 kg/VKT 4.4 % silt content 0.3873 kg/hr 4.4 Silt content 138 715 h/period E2 - Dozer 50 % control 0 % control Wind Erosion - E2 (during construction) 21 0.6 ha 0.0075 kg/ha/h 4,380 h/y 0.6 ha 0.0075 kg/ha/h Wind Erosion - E2 (after cosntruction) 4.380 h/v 95 % control 0.0025 kg/VKT Truck movement - cement 0 126 trucks/vear 0.0124 kg/trip 29 Vehicle gross mass (†) 5.0 km/return trip 0.5 silt loading (g/ 80 %control 0.0048 kg/VKT 0.5 silt loading (g/n 80 %control 55 Vehicle gross mass (1) Truck movement - aggregate 300 trucks/year 0.0128 kg/trip 2.7 km/ return trip 55 Vehicle gross mass (†) 0.0048 kg/VKT 0.5 silt loading (g/n 80 %control Truck movement - sand 1.151 trucks/vear 0.0128 kg/trip 13 payload (tonnes) 2.7 km/ return trip 0.0015 kg/VKT 0.5 silt loading (g/n 1,518 trucks/year 0.0040 kg/trip 18 Vehicle gross mass (†) 80 %control Truck movement - shotcrete 2.6 km/ return trip Loading cement at rail siding 6,600 t/y 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % Aggregate transfer 0.0001 kg/t 9,348 t/ 14,960 t/y Sand transfer 0.0000 kg/t 6.600 t/y Cement transfe 0.0000 kg/t Weigh hopper logding 30.908 t/v 0.0001 ka/t 0.0007 kg/t 30,908 t/y 75 Truck loading Residual from de-dusted air loading cement and fly-ash 30,908 t/y 0.0028 g/Nm3 34 Nm3/minute minutes/tonne 70 %control Wind erosion (aggregate stock piles) 0.1 ha 0.0075 kg/ha/h 8,760 h/y 95 %control Wind erosion (whole CBP) 0.4 ha 0.0075 kg/ha/h 8.760 h/v 43,050 t/period 0.0001 kg/t 3 moisture content in % 2.90 average of (wind speed/2.2)^1.3 in m/s Waste rock - load in pit 20,500 m3/period Waste rock - haul to E3 (unsealed) 29 0.0070 kg/m3 36 mean vehicle mass (1) 1.7 km/return trip 0.0548 kg/VKT 4.4 % silt content 80 % control Waste rock - haul to E3 (sealed) 0.5 silt loading (g/r 14 20,500 m3/period 0.0007 kg/m3 36 mean vehicle mass (†) 2.9 km/return trip 0.0031 kg/VKT Waste rock - dump at E3 3 43.050 t/period 0.0001 ka/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % contro 0.0001 kg/t 5.040 t/period Filter sand - load at external site 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % control 5 Vehicle gross mass (†) 80 % control Filter sand - haul to E3 (unsealed) 2,100 m3/period 0.0199 kg/m3 5.5 km/return trip 0.0541 kg/VKT 4.4 % silt content 5,040 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % control Filter sand - dump at E3 Crushed rock rest layer - load in pit 4.200 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 % contro 1.7 km/return trin 0.0548 kg/VKT Crushed rock rest layer - haul to E3 (unsealed) 2,000 m3/vegr 36 mean vehicle mass (t) 4.4 % silt conten 80 % control 0.0007 kg/m3 Waste rock - haul to E3 (sealed) 2 000 m3/period 36 mean vehicle mass (t) 2.9 km/return trip 0.0031 kg/VKT 0.5 silt loading (g/n 3 moisture content in % 50 % control 4.200 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s Crushed rock rest layer - dump at E3 4,200 t/period 0.0000 kg/t Crushed rock rest laver - screening in pit 0.0011 kg/t Crushed rock rest layer - primary crushing in pit 4,200 t/period 0.0465 kg/VKT 4.4 % silt content loe and side anchorage of liner - haul to E3 (unsealed) 17 concrete mixer loads (return 25 Vehicle gross mass (†) 5.5 km/return trip 80 % contro Crest anchor trench - haul to E3 (unsealed) 17 concrete mixer loads (return) 25 Vehicle gross mass (†) 5.5 km/return trip 0.0465 kg/VKT 4.4 % silt content 80 % control 596 h/period 0.3873 kg/hr 115 4.4 Silt content 3 moisture content 50 % control E3 - Dozer Wind Erosion - E3 (during construction) 0.3 ha 0.0075 ka/ha/h 4.380 h/v 0.3 ha 0.0075 kg/ha/h 95 % control Wind Erosion - E3 (after cosntruction) 4,380 h/y 472 Total (kg/y)


Pacific Environment

Limited

ACTIVITY PM2.5 0.0001 kg/t Units 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % ble 3 able 4 Units iable 5 Intensity 383,250 t/period Units Units Waste rock - load in pit Waste rock - haul to E2 (sealed) 342 182,500 m3/period 0.0019 kg/m3 13 m3/load 64 mean vehicle mass (†) 4.4 km/return trip 0.0055 kg/VKT 0.5 silt loading (g/n 0.0081 kg/m3 Waste rock - haul to E2 (unsealed) 296 182,500 m3/period 13 m3/load 50 Vehicle gross mass (†) 1.7 km/return trip 0.0635 kg/VKT 4.4 % silt content 80 27 383,250 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 Waste rock - dump at E2 Prep E2 footprint - load at E2 t/period 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 80 Prep E2 footprint - haul within E2 m3/period 0.0032 kg/m3 8 m3/load 50 Vehicle gross mass (†) 0.4 km/return trip 0.0635 kg/VKT 4.4 % silt content 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s Prep E2 footprint - dump at E2 t/period 3 moisture content in % 50 0.0001 kg/t Filter sand - load at external site t/period 2.90 average of (wind speed/2.2)^1.3 in m/s 3 moisture content in % 50 0.0044 kg/VKT 0.5 silt loading (g/n 0.0019 kg/m3 6.4 km/return trip Filter sand - haul to E2 (sealed) m3/period 15 m3/load 51 mean vehicle mass (†) m3/period 0.0000 kg/m3 15 m3/load 0.0 km/return trip 0.0541 kg/VKT 35 Vehicle gross mass (†) 4.4 % silt content 80 Filter sand - haul to E2 (unsealed) 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s Filter sand - dump at E2 t/period 3 moisture content in % 50 50 2.90 average of (wind speed/2.2)^1.3 in m/s 0.0001 kg/t 8 moisture content in % Crushed rock rest layer - load in pit t/period m3/year 0.0019 kg/m3 13 m3/load 64 mean vehicle mass (†) 4.4 km/return trip 0.0055 kg/VKT 0.5 silt loading (g/n Crushed rock rest layer - haul to E2 (sealed) m3/year 0.0081 kg/m3 13 m3/load 50 Vehicle gross mass (†) 1.7 km/return trip 0.0635 kg/VKT 4.4 % silt content Crushed rock rest laver - haul to E2 (unsealed) 2.90 average of (wind speed/2.2)^1.3 in m/s Crushed rock rest layer - dump at E2 t/period 0.0001 kg/t 3 moisture content in % 50 Crushed rock rest layer - screening in pit 100 375 t/period Crushed rock rest layer - primary crushing in pit 100,375 t/period 0.0011 kg/t 0.0015 kg/VKT 365 concrete mixer loads (return 18 mean vehicle mass (t) 6.4 km/return trip 0.5 silt loading (g/n Toe and side anchorage of liner - haul to E2 (sealed) 4 365 concrete mixer loads (return) 25 Vehicle gross mass (†) 0.0 km/return trip 80 Toe and side anchorage of liner - haul to E2 (unsealed) 0.0465 kg/VKT 4.4 % silt content 0.0015 kg/VKT 0.5 silt loading (g/n 365 concrete mixer loads (return 18 mean vehicle mass (t) 6.4 km/return trip Crest anchor trench - haul to E2 (sealed) 365 concrete mixer loads (return) 25 Vehicle gross mass (†) 0.0 km/return trip 4.4 % silt content 80 Crest anchor trench - haul to E2 (unsealed) 0.0465 kg/VKT ,825 h/period 0.3873 kg/hr 4.4 Silt content 3 moisture content E2 - Dozer 50 0.6 ha Wind Erosion - E2 (during construction) 42 0.0075 kg/ha/h 8,760 h/y Wind Erosion - E2 (after cosntruction) 0.6 ha 0.0075 kg/ha/h 95 8,760 h/y Truck movement - cement 161 trucks/yea 0.0124 kg/trip 29 Vehicle gross mass (†) 5.0 km/ return trip 0.0025 kg/VKT 0.5 silt loading (g/r 80 0 Truck movement - aggregate 383 trucks/year 0.0128 kg/trip 55 Vehicle gross mass (†) 2.7 km/ return trip 0.0048 kg/VKT 0.5 silt loading (g/n 80 80 Truck movement - sand 4 1,469 trucks/year 0.0128 kg/trip 13 payload (tonnes) 55 Vehicle gross mass (†) 2.7 km/ return trip 0.0048 kg/VKT 0.5 silt loading (g/n 80 Truck movement - shotcrete 2 1.937 trucks/vear 0.0040 kg/trip 18 Vehicle gross mass (†) 2.6 km/ return trip 0.0015 kg/VKT 0.5 silt loading (g/n 0.0001 kg/t 0.0001 kg/t 2.90 average of (wind speed/2.2)^1.3 in m/s Loading cement at rail siding 7,763 t/y 3 moisture content in % 10.995 t/v Aggregate transfer 17,596 t/y 0.0000 kg/t Sand transfer 7,763 t/y 0.0000 ka/t Cement transfer 36,354 t/y 0.0001 kg/t Weigh hopper loading Truck loading 36,354 t/y 0.0007 kg/t 75 36,354 t/y Residual from de-dusted air loading cement and fly-ash 0.0028 g/Nm3 34 Nm3/minute minutes/tonne Wind erosion (aggregate stock piles) 0.1 ha 0.0075 kg/ha/h 8,760 h/y Wind erosion (whole CBP) 0.4 ha 0.0075 kg/ha/h 8,760 h/y 9.5 1,225 Total (kg/y)

Pacific Environment

Limited

•	٠	•••	•			
		_		_	_	-
	-	_	-			

Loading cement at rail siding	Assumes 3% moisture content
Aggregate transfer	Uncontrolled
Sand transfer	Uncontrolled
Cement transfer	Controlled through use of water spray
Weigh hopper loading	70& control applied as it will be in a building (per Environ 2010)
Truck loading	Controlled through use of water spray
Residual from de-dusted air loading cement and fly-ash	
Wind erosion (aggregate stock piles)	Assumes area of stockpiles to be 0.1 ha. Control applied for enclosure
Wind erosion (whole CBP)	Chemical suppressant will be applied and achieve 95% dust control. Per Environ (2010)
Waste rock - load in pit	Assumed that waste rock will be loaded in Kintore Pit. Average wind speed and moisture content based on Environ (2010).
Waste rock - haul to E3 (unsealed)	Haul roads to lengths to be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant
Waste rock - haul to E3 (sealed)	
Waste rock - dump at E3	Average wind speed and moisture content based on Environ (2010)
Filter sand - load at external site	Assumed to happen offsite
Filter sand - haul to E3 (unsealed)	Haul roads to lengths to be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant
Filter sand - dump at E3	Average wind speed and moisture content based on Environ (2010)
Crushed rock rest layer - load in pit	Assumed that crushed rock will be loaded in Kintore Pit.
Crushed rock rest layer - haul to E3 (unsealed)	Haul roads to lengths to be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant
Waste rock - haul to E3 (sealed)	sopplessum
Crushed rock rest layer - dump at E3	Average wind speed and moisture content based on Environ (2010)
Crushed rock rest layer - screening in pit	Water sprays will be used as a control measure. Assumes high moisture content ore per Environ (2010), therefore no emissions from screening
Crushed rock rest layer - primary crushing in pit	Water sprays will be used as a control measure. Assumes high moisture content ore per Environ (2010).
Toe and side anchorage of liner - haul to E3 (unsealed)	Haul roads to lengths to be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant
Crest anchor trench - haul to E3 (unsealed)	Haul roads to lengths to be estimated from maps. Silt content based on Environ (2010). 80% control with water and chemical suppressant
E3 - Dozer	Operating hours are 7am to 6pm M to F and 7am to 1pm Sat. Assumes a 5 month construction period. Assumes that during this period some of the time will be spent constructing decant pond. Assumes dust generating activities only 50% of the time.
Wind Erosion - E3 (during construction)	Assumed no control during construction. Assumes only held of area exposed at any one time.
Wind Erosion - E3 (after construction)	Chemical suppressant will be applied and achieve 95% dust control. Per Environ (2010)

APPENDIX B. EMISSIONS INVENTORY AND ASSUMPTIONS FOR OPERATIONS IN 2016

Pacific Environment Limited

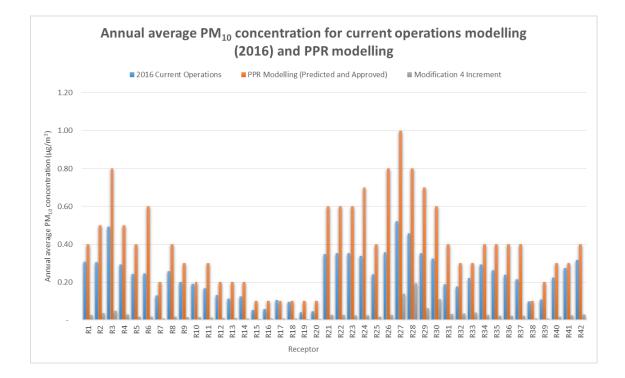
ACTIVITY	TSP emission (kg/y)	Intensity	Units	Emission factor	Units	Variable 1	Units	Variable 2	Units	Variable 3	Units	Variable 4	Units	Variable 5	Units	Control	Units
Haul - from Kintore Pit to ROM pad (unsealed	5,650	12,915	km/year	2.1872	kg/VKT	17016	no. trips	36 r	nean vehicle mass (†	0.8 km	ı	2.1872	kg/VKT	4.4	% silt content	80 %	control
Haul - from Kintore Pit to ROM pad (sealed)	1,381	20,777	km/year	0.0665	kg/VKT	17016	no. trips	36 1	mean vehicle mass (†	1.2 km	ı	0.0665	kg/VKT	0.5	silt loading (g/n	0 %	control
Haul - Concentrate to rail (sealed)	408	6,134	km/year	0.0665	kg/VKT	3205	no. trips	36 1	mean vehicle mass (†	1.9 km	ı	0.0665	kg/VKT	0.5	silt loading (g/n	0 %	control
Haul -Waste to Kintore Pit (unsealed)	1,434	3,279	km/year	2.1872	kg/VKT	4320	no. trips	36 1	mean vehicle mass (†	0.8 km	ı	2.1872	kg/VKT	4.4	% silt content	80 %	control
Haul -Waste to Kintore Pit (sealed)	431	6,476	km/year	0.0665	kg/VKT	4320	no. trips	36 1	mean vehicle mass (†	1.5 km	ı	0.0665	kg/VKT	0.5	silt loading (g/n	0 %	control
Haul - to workshop (sealed)	204	3,066	km/year	0.0665	kg/VKT	10220	no. trips	36 1	mean vehicle mass (†	0.3 km	ı	0.0665	kg/VKT	0.5	silt loading (g/n	0 %	control
Dump - Ore at ROM pad	25	12,915	t/year	0.0019	kg/t	2.90	average of (wind speed/2.2)^1.3 in	3 1	moisture content in %							0 %	control
FEL at ROM pad	4,869	2,640	h/year	3.6886	kg/hr	4.4	Silt content	3 1	noisture content							50 %	% control
Crushed ore storage bin trasnfer	25	12,915	t/year	0.0019	kg/t	2.90	average of (wind speed/2.2)^1.3 in	3 1	noisture content in %							0 %	control
Concentrate handling	1	6,134	t/year	0.0004	kg/t	2.90	average of (wind speed/2.2)^1.3 in	9 ⁷ r	noisture content in %							70 %	control
Wind Erosion - ROM pad	77	0.25	ha	0.1000	kg/ha/h	8,760	h/y									65 %	control
Wind Erosion - Free areas	726	24.4	ha	0.1000	kg/ha/h	8,760	h/y									96.6 %	control
Wind Erosion - Disturbed areas	5,937	67.8	ha	0.1000	kg/ha/h	8,760	h/y									90 %	control
Total (kg/y)	21,167																

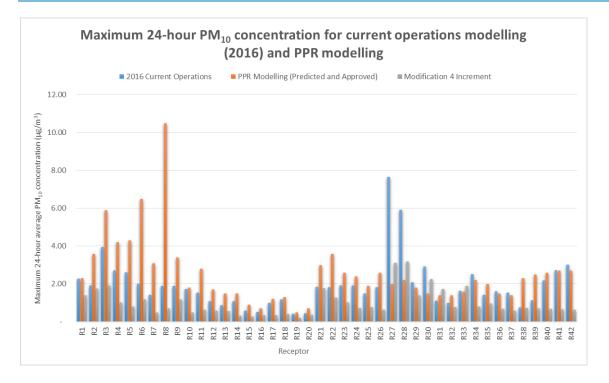
ΑCΤΙVΙΤΥ	PM10 emission (kg/y)	Intensity		Units	Emission factor	Units	Variable 1	Units	Variable 2	Units	Variable 3	Units	Variable 4	Units	Variable 5	Units	Control	Units
Haul - from Kintore Pit to ROM pad (unseale	239	12,915	km/year		0.0923	kg/VKT	17016	no. trips	36 n	nean vehicle mass (1) 0.8 k	n	0.0923	kg/VKT	4.4	% silt content	80 5	% control
Haul - from Kintore Pit to ROM pad (sealed)	1,608	20,777	km/year		0.0774	kg/VKT	17016	no. trips	36 n	nean vehicle mass (1	1.2 k	n	0.0774	kg/VKT	0.5	silt loading (g/n	0	
Haul - Concentrate to rail (sealed)	475	6,134	km/year		0.0774	kg/VKT	3205	no. trips	36 n	nean vehicle mass (1	1.9 k	n	0.0774	kg/VKT	0.5	silt loading (g/n	0 5	% control
Haul -Waste to Kintore Pit (unsealed)	61	3,279	km/year			kg/VKT	4320	no. trips	36 n	nean vehicle mass (1			0.0923	kg/VKT		% silt content		% control
Haul -Waste to Kintore Pit (sealed)	501	6,476	km/year			kg/VKT		no. trips	36 n	nean vehicle mass (†			0.0774	kg/VKT		silt loading (g/n		% control
Haul - to workshop (sealed)	237		km/year			kg/VKT	10220	no. trips	36 n	nean vehicle mass (1) 0.3 k	n	0.0774	kg/VKT	0.5	silt loading (g/n	0	
Dump - Ore at ROM pad	12	12,915	t/year		0.0009	kg/t	2.90	average of (wind speed/2.2)^1.3 in	3 n	noisture content in %	5						0	% control
FEL at ROM pad	883	2,640			0.6691		4.4	Silt content	3 n	noisture content							50	% control
Crushed ore storage bin trasnfer	12	12,915	t/year		0.0009		2.90	average of (wind speed/2.2)^1.3 in		noisture content in %								% control
Concentrate handling	0	6,134			0.0002	kg/t	2.90	average of (wind speed/2.2)^1.3 in	9 n	noisture content in %	5						70 🤅	% control
Wind Erosion - ROM pad	38	0.25	ha		0.0500	kg/ha/h	8,760	h/y									65 \$	% control
Wind Erosion - Free areas	363	24.4	ha		0.0500	kg/ha/h	8,760	h/y									96.6	% control
Wind Erosion - Disturbed areas	2,968	67.8	ha		0.0500	kg/ha/h	8,760	h/y									90 \$	% control
Total (kg/y)	7,397																	

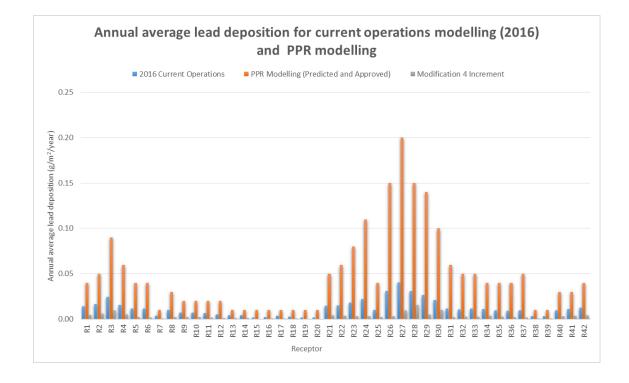
ACTIVITY	PM2.5 emission (kg/y)	Intensity	Units	Emission factor	Units	Variable 1	Units	Va	riable 2	Units	Variable 3	Units	Variable 4	Units	Variable	5 Units	Control	Units
Haul - from Kintore Pit to ROM pad (unseal	58	12,915 km/ye	ar	0.0223	kg/VKT	17016	no. trips		36	mean vehicle mass (†)	0.8 kr	n	0.0223	kg/VKT	4	4 % silt content	80	% control
Haul - from Kintore Pit to ROM pad (sealed	161	20,777 km/ye	ar	0.0077	kg/VKT	17016	no. trips		36	mean vehicle mass (†)	1.2 kr	n	0.0077	kg/VKT	0	5 silt loading (g/r	0	
Haul - Concentrate to rail (sealed)	47	6,134 km/ye	ar	0.0077	kg/VKT	3205	no. trips		36	mean vehicle mass (†)	1.9 kr	n	0.0077	kg/VKT	0	5 silt loading (g/r	0	% control
Haul -Waste to Kintore Pit (unsealed)	15	3,279 km/ye	ar		kg/VKT		no. trips		36	mean vehicle mass (†)			0.0223	kg/VKT		4 % silt content		% control
Haul -Waste to Kintore Pit (sealed)	50	6,476 km/ye	ar	0.0077	kg/VKT	4320	no. trips		36	mean vehicle mass (†)	1.5 kr	n	0.0077	kg/VKT		5 silt loading (g/r		% control
Haul - to workshop (sealed)	24	3,066 km/ye	ar	0.0077	kg/VKT	10220	no. trips		36	mean vehicle mass (†)	0.3 kr	n	0.0077	kg/VKT	0	5 silt loading (g/r	0	
Dump - Ore at ROM pad	2	12,915 t/year	r	0.0001	kg/t	2.90	average of (wind speed/2	.2)^1.3 in	3	moisture content in %							0	% control
FEL at ROM pad	511	2,640 h/yea	r	0.3873	kg/hr	4.4	Silt content		3	moisture content							50	% control
Crushed ore storage bin trasnfer	2	12,915 t/year		0.0001	kg/t	2.90	average of (wind speed/2	.2)^1.3 in	3	moisture content in %							0	% control
Concentrate handling	0.1	6,134 t/year	r	0.0000	kg/t	2.90	average of (wind speed/2	.2)^1.3 in	9	moisture content in %							70	% control
Wind Erosion - ROM pad	6	0.25 ha		0.0075	kg/ha/h	8,760	h/y										65	% control
Wind Erosion - Free areas	54	24.4 ha		0.0075	kg/ha/h	8,760	h/y											% control
Wind Erosion - Disturbed areas	445	67.8 ha		0.0075	kg/ha/h	8,760	h/y										90	% control
Total (kg/y)	1,375																	

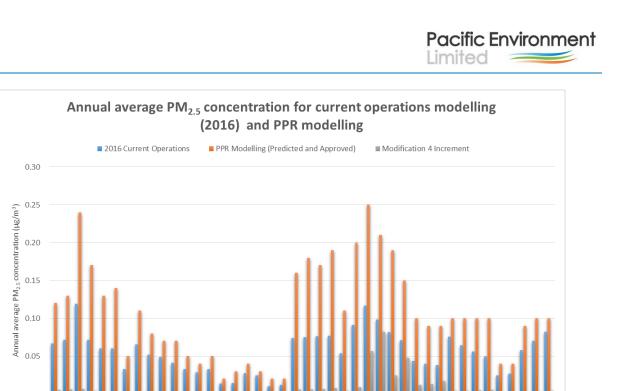
Parameter	Vent shaft	Baghouse stack	Vent shaft 6
Stack height (m)	3.00	5.00	8.0
Stack diameter (m)	4.7	0.7	4.0000
Exit Velocity (m/s)	10.4	19.7	4.9
Temperature (K)	295	Ambient	295
Easting (m)	543,616	544,736	543,304
Northing (m)	6,463,201	6,463,699	6,462,437
TSP emission rate (g/s)	0.12	0.005	0.12
PM10 emission rate (g/s)	0.09	0.005	0.09
PM _{2.5} emission rate (g/s)	0.03	0.001	0.03
Lead (TSP) emission rate (g/s)	0.004	0.0001	0.0036

ACTIVITY	TSP Emission kg/year	Adopted Pb source measurement	Adopted Pb composition (%)
Haul - from Kintore Pit to ROM pad (unsealed)	133.9	Unpaved Road	2.4%
Haul - from Kintore Pit to ROM pad (sealed)	32.7	Unpaved Road	2.4%
Haul - Concentrate to rail (sealed)	9.7	Unpaved Road	2.4%
Haul -Waste to Kintore Pit (unsealed)	34.0	Unpaved Road	2.4%
Haul -Waste to Kintore Pit (sealed)	10.2	Unpaved Road	2.4%
Haul - to workshop (sealed)	4.8	Unpaved Road	2.4%
Dump - Ore at ROM pad	0.8	ROM ore	3.0%
FEL at ROM pad	146.1	ROM ore	3.0%
Crushed ore storage bin transfer	0.8	ROM ore	3.0%
Concentrate handling	0.6	Concentrate	73.3%
Wind Erosion - ROM pad	2.3	ROM ore	3.0%
Wind Erosion - Free areas	10.1	Free areas	1.4%
Wind Erosion - Disturbed areas	140.7	Unpaved Road	2.4%
Vent shaft	126.0	ROM ore	3.0%
Baghouse stack	3.0	ROM ore	3.0%
Vent shaft 6	114.0	ROM ore	3.0%

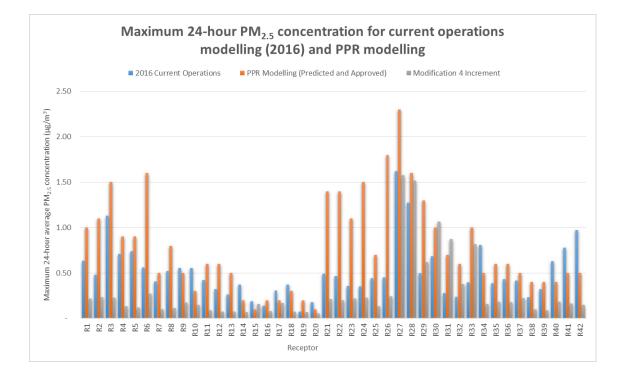

APPENDIX C. PREDICTED IMPACTS FOR RASP MINE FOR 2016 OPERATIONS COMAPRED WITH PPR RESULTS


REVIEW OF CURRENT OPERATIONS DISPERSION MODELLING


The following provides an overview of the air dispersion modelling that was configured for the current operations of Rasp Mine. The modelled year was 2016 and combined detailed information on the site operations with site representative meteorological data. These data can be directly compared with the air dispersion modelling that was completed for Rasp Mine's Preferred Project Report (PPR) **(Environ, 2010)**.


The following considerations should be made in comparing these two sets of results:

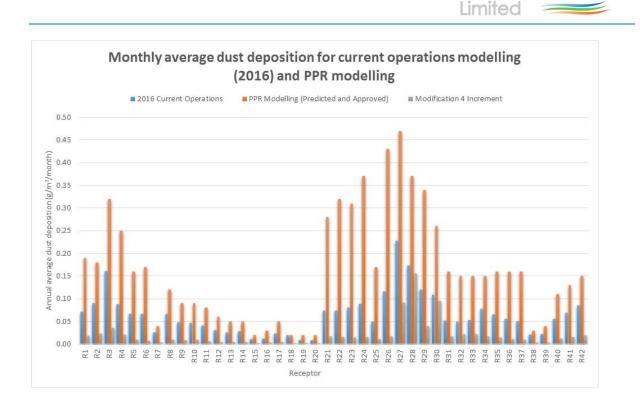
- The 2016 operations did not operation at 100% capacity, while the PPR calculation all emissions based on the respective assumption.
- Different meteorological files were used. The 2016 current operations adopted 2016, while the PPR adopted 2008/2009. Therefore the 24-hour predictions will not always align with the annual results.
- > The source configuration has changed, where the main vent shaft has been relocated and there has been the addition of Vent Shaft No. 6.
- > Updates to emission factors that have taken place since the PPR modelling.

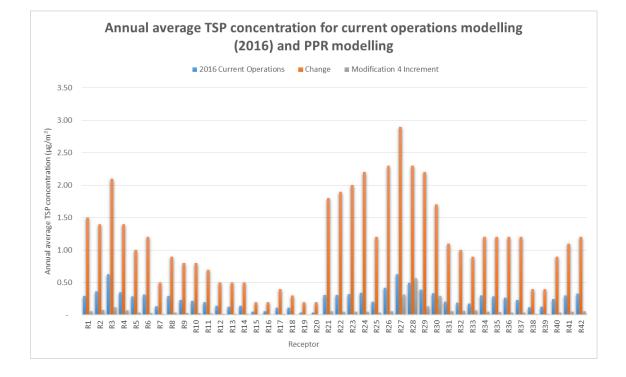

R30 R32

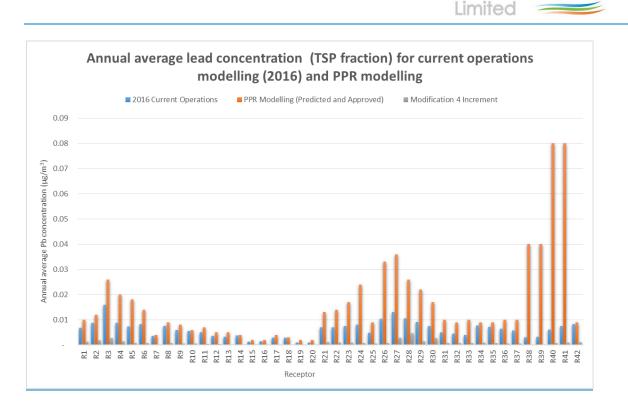
R31 R33 R34

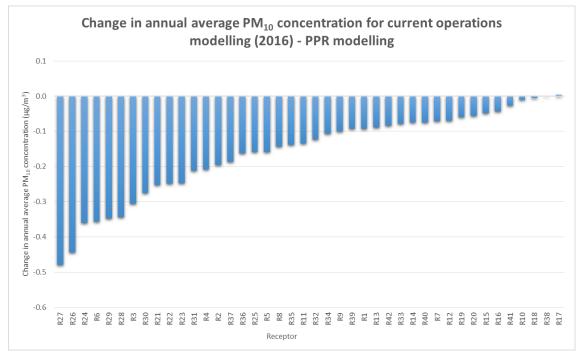
R35 R36

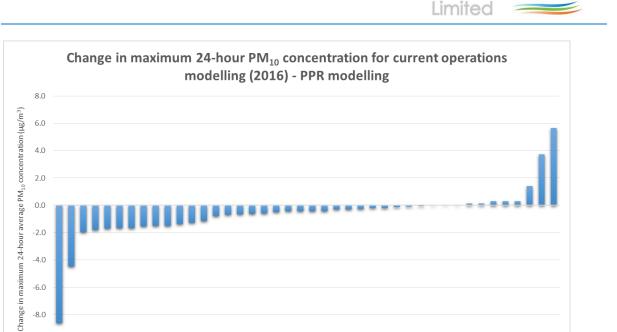
R37 R38

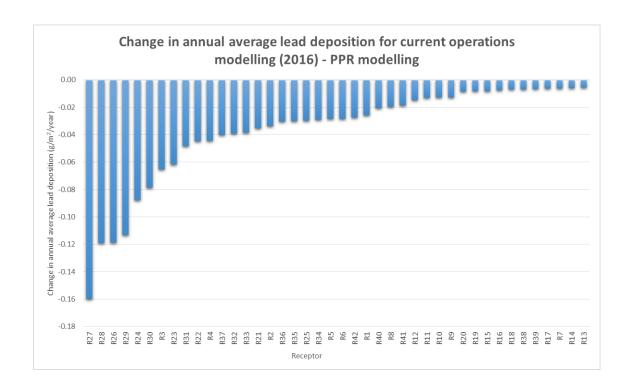

R39 R40 R41 R42

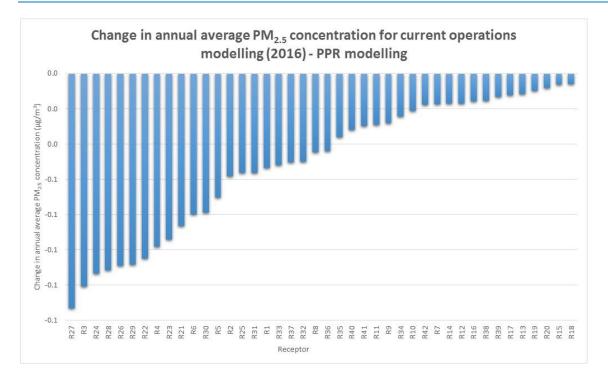


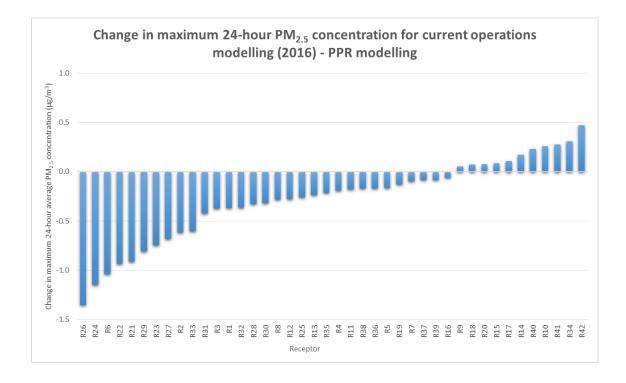

Receptor

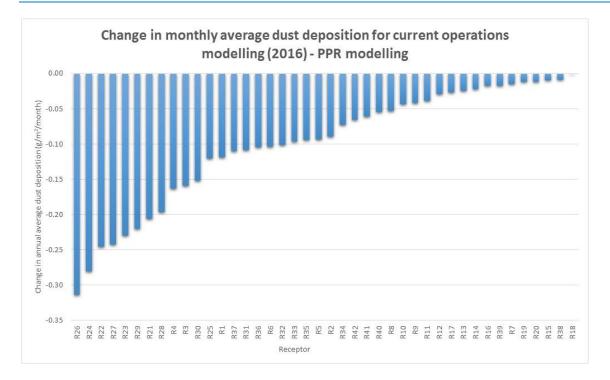

R1 R3 R3

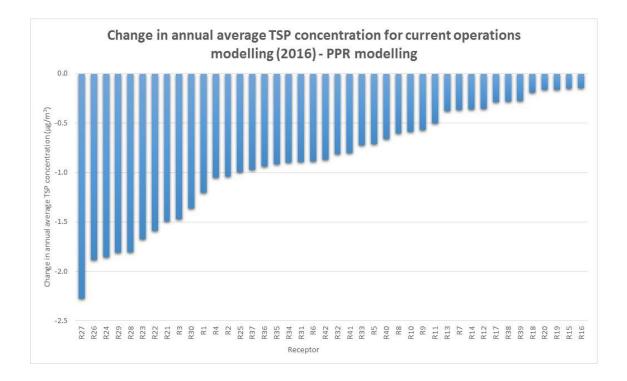

R4 R5 R6 R7

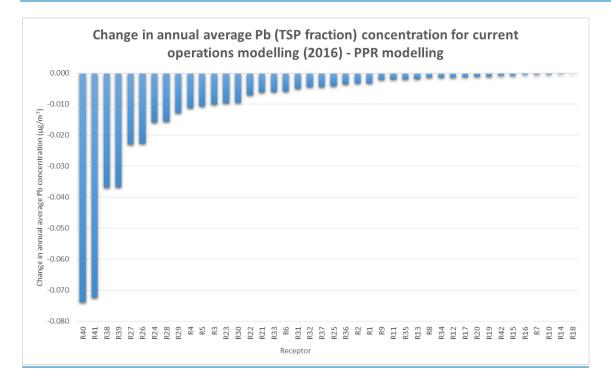





Receptor


Pacific Environment




-10.0

APPENDIX D. DESCRIPTION OF SENSITIVE RECEPTORS AND ALLOCATED BACKGROUND MONITORING LOCATION

		Adopted monitoring location used for background								
Receptor ID	Description	PM10, PM2.5	TSP	PM and lead deposition						
R1	Piper Street North	TEOM1	hvas	DG5						
R2	Piper Street Central	TEOM1	HVAS	DG5						
R3	Eyre Street North	TEOM1	HVAS	DG5						
R4	Eyre Street Central	TEOM1	HVAS	DG5						
R5	Eyre Street South	TEOM1	HVAS	DG5						
R6	South Road	TEOM1	HVAS	DG5						
R7	Carbon Lane	TEOM2	HVAS	DG1						
R8	Old South Road	TEOM2	HVAS	DG1						
R9	South Rd	TEOM2	HVAS	DG2						
R10	Cnr Garnet & Blende Streets	TEOM2	HVAS	DG2						
R11	Alma Bugldi Preschool	TEOM1	HVAS	DG5						
R12	Playtime Pre-school	TEOM1	HVAS	DG7						
R13	Alma Primary School	TEOM1	HVAS	DG7						
R14	Broken Hill High School	TEOM2	HVAS	DG2						
R15	Broken Hill Hospital	TEOM2	HVAS	DG2						
R16	N. Broken Hill Primary School	TEOM2	HVAS	DG2						
R17	Broken Hill Public School	TEOM2	HVAS	DG2						
R18	Rainbow Pre-school	TEOM1	HVAS	DG7						
R19	Willyama High School	TEOM2	HVAS	DG2						
R20	Morgan Street Primary School	TEOM2	HVAS	DG2						
R21	Eyre Street North	TEOM1	hvas	DG5						
R22	Eyre Street North	TEOM1	HVAS	DG5						
R23	Eyre Street North	TEOM1	HVAS	DG5						
R24	Eyre Street North	TEOM1	HVAS	DG5						
R25	Water tank, Lawton Street #	TEOM1	HVAS	DG5						
R26	Quarry offices	TEOM1	HVAS	DG5						
R27	Proprietary Square	TEOM2	HVAS	DG6						
R28	Proprietary Square	TEOM2	HVAS	DG6						
R29	lodide Street	TEOM2	HVAS	DG6						
R30	lodide Street	TEOM2	HVAS	DG6						
R31	Crystal Street	TEOM2	HVAS	DG6						
R32	Crystal Street	TEOM2	hvas	DG6						
R33	Brownes Shaft Dwelling	TEOM2	HVAS	DG4						
R34	Crystal Street	TEOM2	HVAS	DG2						
R35	Crystal Street	TEOM2	HVAS	DG2						
R36	Crystal Street	TEOM2	HVAS	DG2						
R37	Crystal Street	TEOM2	HVAS	DG2						
R38	Gypsum Street	TEOM2	HVAS	DG1						
R39	Gypsum Street	TEOM2	HVAS	DG1						
R40	Silver City Hwy	TEOM2	HVAS	DG2						
R41	Silver City Hwy	TEOM2	HVAS	DG2						
R42	Silver City Hwy	TEOM2	HVAS	DG2						
R43	Bowling Green	TEOM2	HVAS	DG6						
R44	Playground	TEOM1	HVAS	DG7						

R45	Playground	TEOM1	HVAS	DG7
R46	Playground	TEOM1	hvas	DG7
R47	Playground	TEOM2	HVAS	DG2
R48	Playground	TEOM2	hvas	DG2
R49	Playground	TEOM2	hvas	DG2

APPENDIX E. MONITORING DATA REVIEW

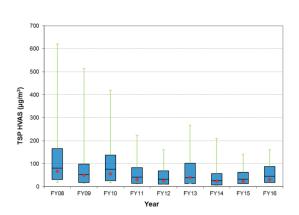


Figure E- 1: TSP concentration measured by HVAS

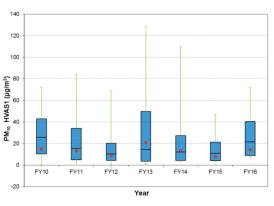
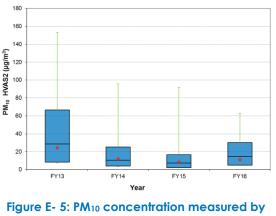



Figure E- 3: PM₁₀ concentration measured by HVAS1

HVAS2

FY12

Year

FY13

FY14

FY15 FY16

Pacific Environment

Limited

6.00

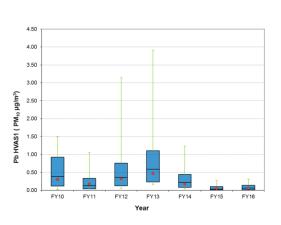
5.00

4.00

3.00

2.00

1 00


0.00

FY08

FY09

FY10 FY11

Pb HVAS (TSP µg/m³)

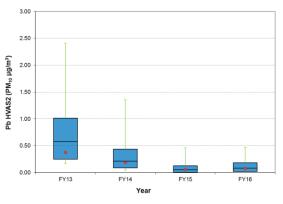


Figure E- 6: Pb concentration measured by HVAS2

Note: The extents of the box denote the 25th and 75th percentile of the data and the median is the line across the box. The mean is the red dot and the green error bars are the maximum and minimum values.

Pacific Environment Limited 180 5 ——TSP Lead (µg/m³) 4.5 160 4 140 3.5 150 (μg/m³) 100 (µg/m³) 3 2.5 80 conc TSP 60 1.5 40 20 0.5 n -Nov-14 --Dec-14 -1-Jan-15 -1-Apr-15 -1-Jun-15 -1-Jul-15 -1-Jul-15 -1-Aug-15 -1-Sep-15 -1-Oct-15 -1-Nov-15 -1-Dec-15 1-Jan-16 1-Apr-16 1-Apr-16 -May-16 1-Juh-16 1-Juh-16 1-Juh-16 1-Oct-16 -1-Nov-16 -1-Dec-16 -1-Jun-11 -1-Jul-11 -1-Aug-11 -1-Feb-15 -- Nov-11 --Aug-14 l-Sep-16 --Feb-11 Mar-11 -May-11 -Sep-11 -Oct-11 -Dec-11 -Aug-13 4 4 -Oct-14 12 11 12 13 ŝ 13 13 12 13 13 13 13 13 4 1-Jan-Feb--Iul-J öct 1-Jul-1 Sep-L-Jan--Feb-L-Mar--May-Mar Nov Dec-1-Jan--Apr-Date

Figure E- 7: Time series of HVAS data showing a reduction in TSP and Pb concentrations

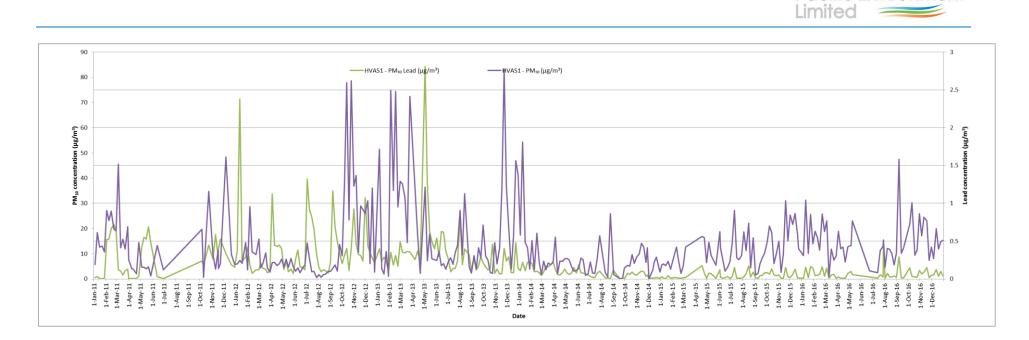


Figure E- 8: Time series of HVAS1 data showing a reduction in PM₁₀ and Pb concentrations

Pacific Environment Limited

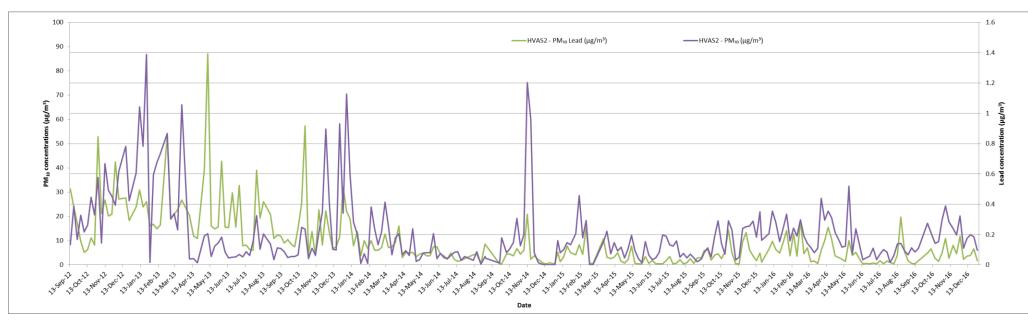
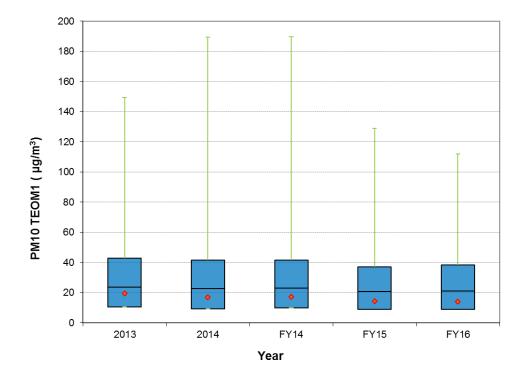
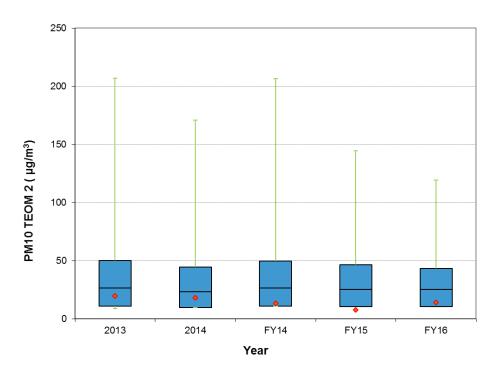




Figure E- 9: Time series of HVAS2 data showing a reduction in PM₁₀ and Pb concentrations

Figure E- 11: PM_{10} concentrations ($\mu g/m^3$) measured by TEOM2

Note: The extents of the box denote the 25th and 75th percentile of the data and the median is the line across the box. The mean is the red dot and the green error bars are the maximum and minimum values.

Figure E- 12: Time series of dust deposition data from DG1-DG7 (D1-D7)

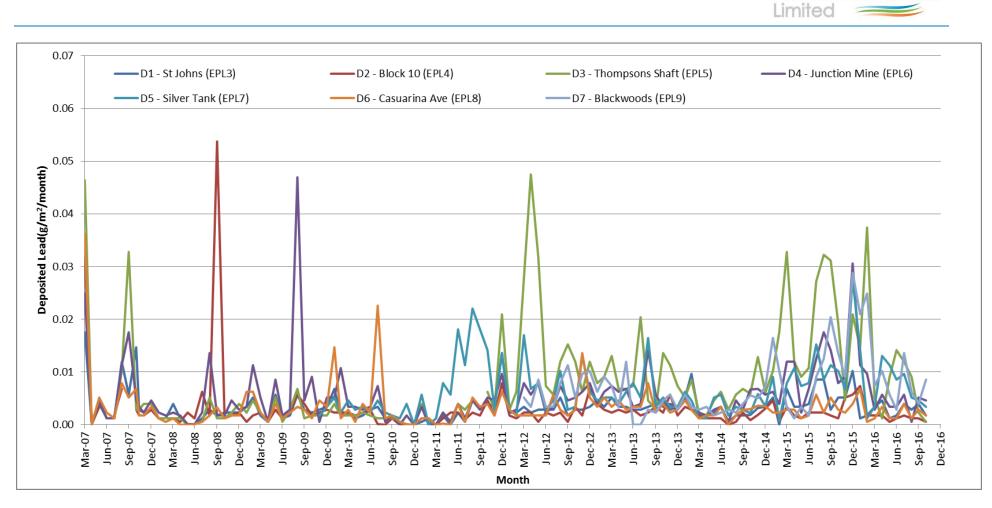


Figure E- 13: Time series of deposited lead from DG1-DG7 (D1-D7)

APPENDIX F. Contour Plots

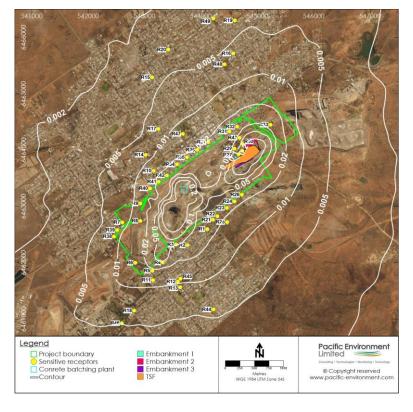


Figure C- 1: Predicted incremental annual average PM₁₀ concentrations (µg/m³)

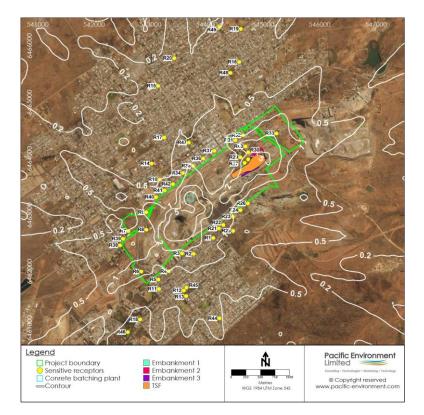


Figure C- 2: Predicted incremental maximum 24-hour average PM₁₀ concentrations (µg/m³)

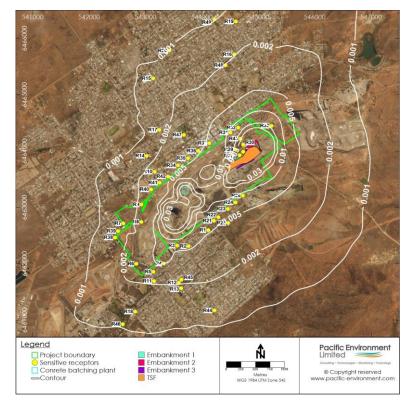


Figure C- 3: Predicted incremental annual average $PM_{2.5}$ concentrations (μ g/m³)

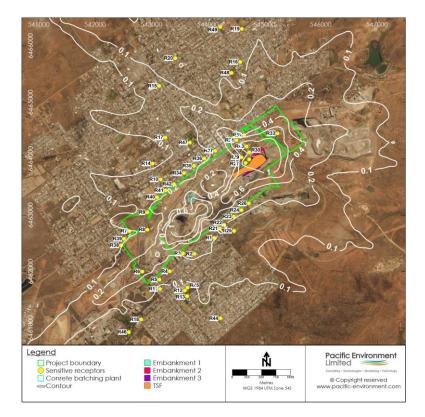


Figure C- 4: Predicted incremental maximum 24-hour average PM_{2.5} concentrations (µg/m³)

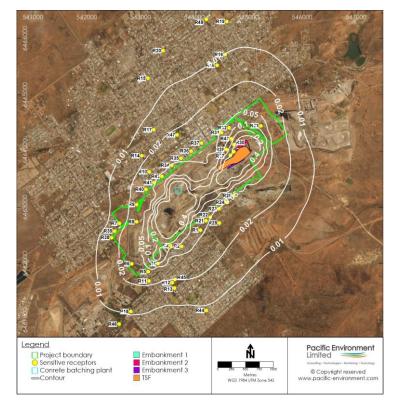


Figure C- 5: Predicted incremental annual average TSP concentrations (µg/m³)

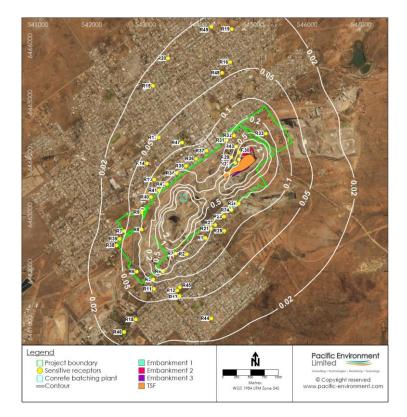


Figure C- 6: Predicted incremental monthly average deposited dust (g/m²/month)

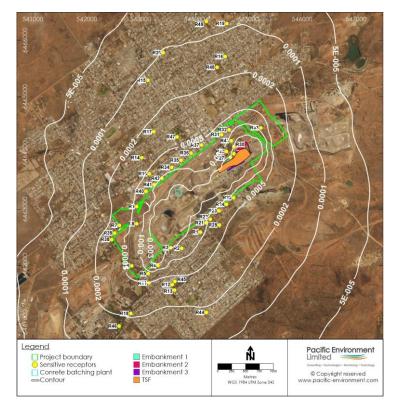


Figure C- 7: Predicted incremental annual average lead concentrations (µg/m³)

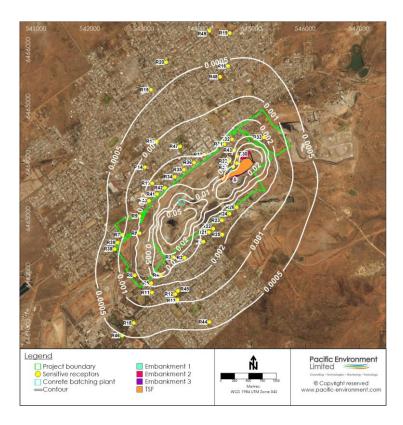


Figure C- 8: Predicted annual average lead deposition (g/m²/year)

APPENDIX G. CABC Monitoring Report

Pacific Environment Limited