

ENDEAVOR OPERATIONS PTY LTD

ENDEAVOR MINE

MONTHLY ENVIRONMENTAL REPORT

June 2020

Name of Operation	Endeavor Mine
Name of Licensee	Endeavor Operations Pty Ltd
Environmental Protection Licence	No: 1301
Reporting Period Start Date	1 June 2020
Reporting End Date	30 June 2020

TABLE OF CONTENTS

1 INT	FRODUCTION	3
2 MC	ONITORING RESULTS	3
2.1	Dust Monitoring	3
2.1	.1 Dust Monitoring Methodology and Limits	4
2.1	.2 Monitoring Locations	4
2.1	.3 Dust Monitoring Data	5
2.2	Groundwater Monitoring	6
2.2	.1 Monitoring Locations	6
2.2	5	
2.3	Tailings Deposition	
2.3	5 1	
3 RE	SULTS LOG	10
	FIGURES LIST	
Figure 2	2.1 Dust monitoring gauge located in the project	3
Figure 2	2.2 Endeavor Mine Dust Monitoring Locations	5
Figure 2	2.3 Location of the Piezometer Monitoring Locations	8
	TABLES LIST	
m 11 0		
Table 2	-1 Endeavor Mine Air Monitoring Requirements	4
Table 2	-2 Dust monitoring results June 2020	5
Table 2	-3 EPA Monitoring Stations	6
Table 2	-4 EPA Monitoring Parameters	7
Table 2	-5 Groundwater monitoring results June 2020	9
Table 2	-6 Tailings Deposition for June 2020	10
Table 3	-1 Laboratory results log	10

1 INTRODUCTION

We at Endeavor Mine conduct systematic and periodic environmental monitoring of our operations to substantiate the effectiveness of our environmental controls which are in place to protect the environment, the health of our workers, our neighbours and the greater community. The results in this report correspond to the <u>June 2020</u>. This report publishes the summary of the environmental monitoring carried during this month for dust deposition, tailings deposition and groundwater. All monitoring is conducted in accordance with regulatory requirements and the EOPL Annual Environmental Monitoring Plan. Samples are collected and handled in accordance and compliance with regulatory requirements and taken to laboratories accredited by the National Association of Testing Authorities (NATA) for analysis.

2 MONITORING RESULTS

2.1 Dust Monitoring

Air quality aspects and impacts associated with site operations are managed in accordance with the Air Quality Management Plan (END-PLN-ENV-006) and the requirement detailed in NSW Environmental Protection Licence 1301.

The Endeavor Mine is located 47 km from the nearest town (Cobar) and 4.5 km away for its nearest sensitive receptor (residential property). Therefore, dust deposition at these potential receptors is considered a low environmental risk.

Nevertheless, dust deposition on and beyond the boundary of the lease has the potential to cause environmental harm. Therefore Endeavor Mine manages airborne contaminants on site through the use of water sprays and a water trucks with depositional dust monitoring stations strategically located along the boundary of ML158/159/160/161 to measure performance.

Figure 2.1 Dust monitoring gauge located in the project

2.1.1 Dust Monitoring Methodology and Limits

The Endeavor Mine Dust Monitoring Program measures dust deposition rates on a monthly basis at the main mining lease boundary (4 locations) and at a background location located 11km from the operating mine site (DDG 5 – Point ID 5). EP Licence 1301 does not set limits for dust deposition. However, these results are compared to the recommended limits outlined in *Approved Methods for the Modelling and Assessment of Air Pollutants in NSW 2016.* This guidance document recommends that the deposition rate for total insoluble matter when expressed as a 12 month rolling average should not exceed 4 g/m²/month and that site activities should not generate dust emissions which result in a dust deposition rate greater than 2 g/m²/month above background levels on a annual average. Table 2-1 describes the Pollutant, Units of Measure, Monitoring Frequency and Method of Sampling.

2.1.2 Monitoring Locations

Point ID	Pollutant	Unit of measure	Frequency	Sampling Method
1	Particulates - Deposited	grams per square metre	Monthly	AM-19
(DDG1)	matter	per month		
2	Particulates - Deposited	grams per square metre	Monthly	AM-19
(DDG2)	matter	per month		
3	Particulates - Deposited	grams per square metre	Monthly	AM-19
(DDG3)	matter	per month		
4	Particulates - Deposited	grams per square metre	Monthly	AM-19
(DDG4)	matter	per month		
5	Particulates - Deposited	grams per square metre	Monthly	AM-19
(DDG5)	matter	per month		

Table 2-1 Endeavor Mine Air Monitoring Requirements

As shown in the satellite image (Figure 2.2), there are 5 dust monitoring locations on the boundary of the lease, with one located 11kms from the site at the turnoff to the Mine site near the Louth Road. This station was positioned to establish background levels.

Figure 2.2 Endeavor Mine Dust Monitoring Locations

2.1.3 Dust Monitoring Data

This report shows the results from the dust monitoring activities carried out during the month of June 2020 (Table 2-2). All values remain well under the recommended guidance values.

Table 2-2 Dust monitoring results June 2020.

	Monitoring locations (Monitoring from 09/06/2020 to 02/07/2020						
Parameters	Unit	DDG1 DDG2		DDG3	DDG4	DDG5	
1 at affecters	Ont						
Total soluble	g/m2*month	< 0.1	< 0.1	1.1	1.2	0.5	
matter	6/ 1112 111011611	, 0.1	10.1	1.1	1.2	0.0	
Total insoluble	g/m2*month	0.1	< 0.1	0.2	0.2	0.1	
matter	g/ IIIZ IIIOIICII	0.1	V 0.1	0.2	0.2	0.1	

2.2 Groundwater Monitoring

Deep regional groundwater flows to the south west, conforming to the structural dip of the underlying sedimentary rocks. Groundwater inflow into the mine is observed at a depth range of between 60 to 80 m below ground surface. A shallow, perched aquifer occurs is found in the vicinity of the Central Tailings Discharge CTD between approximately 0.5 to 13 m below ground surface. This aquifer is recharged by rainfall and seepage water from the operational TSF via a permeable gravelly soil layer in the area.

A review of groundwater characteristics undertaken by consultants Environmental Earth Sciences (EES) in 2013 indicates there is no interface between the shallow perched water and the deep regional aquifer.

Groundwater quality at the mine is generally poor due to the high salinity. The water has been sampled by NSW Water Conservation and Irrigation for the original Environmental Impact Statement (EIS) could be considered "brackish" and was found to have an electrical conductivity (EC) of 26,000 μ S/cm (sea water is approximately 30,000 us/cm). Further, it was noted that the water was not suitable for stock, domestic or farm use. Potential contamination of the groundwater would be of low risk due to the naturally poor quality of the water.

2.2.1 Monitoring Locations

Endeavor Mine's groundwater monitoring locations are concentrated around the perimeter of the Central Tailings Discharge (CTD) and the Sector 5 Tailings Storage Facility (CTF), while surface water monitoring locations are focused on water storages that could potentially discharge to environment during a major rain or storm event. Table 2-3 describes the monitoring stations, where Figure 2.3 shows the locations of the piezometers. Depending on availability of water or flow, unfortunately on some occasions, piezometers cannot be monitored as a result of being dry. Parameters to be monitored are described in

Table 2-4.

EPA ID Type of monitoring point **Location description** 9 PZ Labeled as BH02 Groundwater monitoring point **10** Groundwater monitoring point PZ Labeled as BH02B 11 Groundwater monitoring point PZ Labeled as BH03 **12** Groundwater monitoring point PZ Labeled as BH06 **13** Groundwater monitoring point PZ Labeled as BH08A 14 Groundwater monitoring point PZ Labeled as BH09 **15** Groundwater monitoring point PZ Labeled as BH10 **16** Groundwater monitoring point PZ Labeled as BH10B **17** Groundwater monitoring point PZ Labeled as BH12B 18 Groundwater monitoring point PZ Labeled as BH14 19 Groundwater monitoring point PZ Labeled as BH15 20 Groundwater monitoring point PZ Labeled as BH16 25 Groundwater monitoring point PZ Labeled as BH13

Table 2-3 EPA Monitoring Stations

 Table 2-4 EPA Monitoring Parameters

Pollutant Unit of measure		Frequency	Sampling method
Arsenic	milligrams per litre	Quarterly	Representative sample
Cadmium	milligrams per litre	Quarterly	Representative sample
Calcium	milligrams per litre	Quarterly	Representative sample
Chloride	milligrams per litre	Quarterly	Representative sample
Copper	milligrams per litre	Quarterly	Representative sample
Cyanide (total)	milligrams per litre	Quarterly	Representative sample
Electrical conductivity	milligrams per litre	Quarterly	Representative sample
Iron	milligrams per litre	Quarterly	Representative sample
Lead	milligrams per litre	Quarterly	Representative sample
Magnesium	milligrams per litre	Quarterly	Representative sample
Manganese	milligrams per litre	Quarterly	Representative sample
Mercury	milligrams per litre	Quarterly	Representative sample
рН	рН	Quarterly	Representative sample
Potassium	milligrams per litre	Quarterly	Representative sample
Sodium	milligrams per litre	Quarterly	Representative sample
Standing water level	metres	Quarterly	Representative sample
Sulfate	milligrams per litre	Quarterly	Representative sample
Total dissolved solids	milligrams per litre	Quarterly	Representative sample
Zinc	milligrams per litre	Quarterly	Representative sample

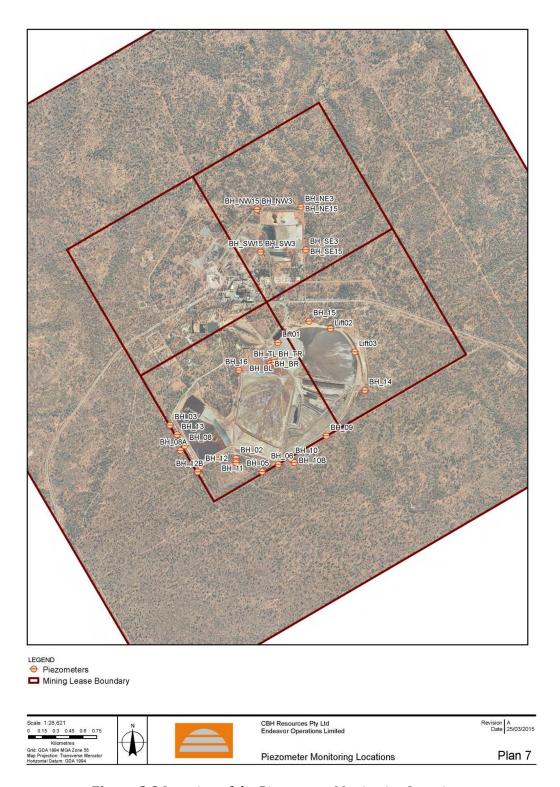


Figure 2.3 Location of the Piezometer Monitoring Locations

2.2.2 Monitoring Results Data

Groundwater monitoring was carried out during the 15 and 16^{th} of June 2020, the results are presented in Table 2-5.

 Table 2-5 Groundwater monitoring results June 2020

_	Monitoring Locations (EPA		BH 02	BH 02B	BH 03	BH 06	BH 8A	BH 9	BH 10	BH 10B	BH 12B	BH 14	BH 15	BH 16	BH 13
	ID)		9	10	11	12	13	14	15	16	17	18	19	20	25
Standing W	Standing Water Levels (m)		2.98	3.9	3.37	3.54	4.37	4.21	11.81	6	6.76	6.53	12.8	4.44	2.5
pH Value	Lab	pH Unit	6.98	6.96	7.05	6.32	7.25	7.31		7.3	7.17	7.5		6.78	7.24
Elect. Cond.	Lab	μS/cm	11200	12400	29100	13800	20100	18500		19200	26900	16100		14500	25600
Temp	Field	С	24	23.3	21.5	24.3	22.8	23		20.4	22.3	23		23	22
Total Disso Solids @18		mg/L	9720	14000	23500	11700	21300	18200		20500	22400	15500		11400	26500
Sulfate as	SO4 -	mg/L	4430	5640	5630	5910	5250	8190		9300	5950	6730		3630	5910
Chloric	de	mg/L	2300	2580	8200	2340	5990	2860		2720	7410	2860		3620	7920
Calciu	m	mg/L	647	615	406	600	788	548		565	810	563		679	885
Magnesi	um	mg/L	1170	1270	1120	1030	1420	1650		1960	1320	1380		524	1990
Sodiur	n	mg/L	1840	2260	5830	1500	3940	2590	*	2510	4400	1980	*	2090	4170
Potassiu	um	mg/L	113	104	227	91	176	261		205	255	160		89	195
Arseni	ic	mg/L	0.119	0.074	0.01	2.43	0.004	0.008		0.007	0.008	0.008		0.003	0.011
Cadmiu	ım	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001		<0.0001	<0.0001
Coppe	r	mg/L	< 0.001	0.002	< 0.001	< 0.001	0.002	0.002		0.003	0.002	0.002		< 0.001	0.002
Lead		mg/L	< 0.001	< 0.001	< 0.001	2.45	< 0.001	0.051		0.003	< 0.001	0.002		< 0.001	< 0.001
Mangan	ese	mg/L	9.32	3.96	2.84	5.71	12.3	3.46		6.12	1.34	0.014		15.1	20
Zinc		mg/L	< 0.005	< 0.005	0.707	0.431	0.01	0.025		0.005	< 0.005	< 0.005		0.263	0.006
Iron		mg/L	2.99	< 0.05	1.74	326	< 0.05	0.1		< 0.05	< 0.05	<0.05		10.4	1.98
Mercui	ry	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001		<0.0001	<0.0001
Total Cya	nide	mg/L	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004		< 0.004	< 0.004	<0.004		< 0.004	<0.004

^{*}Not enough water to sample

ENDEAVOR OPERATIONS PTYLTD 9 | P a g e

2.3 Tailings Deposition

Tailings (also known as tails or residue) are the material left over after the process of separating the valuable fraction from the uneconomic fraction (waste) of the ore. Tailings are distinct from overburden or waste rock or other material that overlies an ore or mineral body and is displaced during mining without being processed.

The volumes of tailings can be large and require an engineered storage and capacity to safely house them, Depending on the nature of the ore or the type of extraction process, tailings can have the potential to harm the environment unless they are deposited and managed correctly.

The reporting of monthly tailings deposition is a legislative requirement as part of EPL 1301.

2.3.1 Tailings Deposition: Data and Discussion

From the 1^{st} of January 2020 the Mine has entered into Care and Maintenance, no tailings have been produced as there are no ongoing operations.

Table 2-6 Tailings Deposition for June 2020

		rotection Licence ng Point 7		otection Licence ng Point 8	TOTAL
	Volume of tailings	Mass of tailing	Volume of	Mass of tailing	Mass of tailing
	deposited (m ³)	solids deposited	tailings	solids deposited	solids deposited
	deposited (iii*)	(DMT)	deposited (KL)	(DMT)	(DMT) YTD
June 2020	-	-	-	-	-

3 RESULTS LOG

Table 3-1 Laboratory results log

Samples	Results received from laboratory
Dust deposition	22 July 2020
Groundwater	26 June 2020
Date report posted on website	24 July 2020